МОДЕЛИРОВАНИЕ ПРОЦЕССОВ В СЛУЧАЕ ДЕИЖЕНИЯ В РЕАКЦИОННОМ ПРОСТРАНСТ-ВЕ ЧАСТИЦ КАТАЛИЗАТОРА С ИЗМЕНЯЮЩЕЙСЯ АКТИВНОСТЬЮ О.А.Махоткин, Ю.И.Кузнецов, М.Г.Слинько

Для системы реактор-регенератор решается задача распределения в реакционном пространстве активности катализатора, зависящей от траекторий отдельных частиц.

Эта задача возникает при моделировании таких промышленных процессов, как каталитический крекинг, дегидрирование углеводородов в псевдоожиженных слоях катализатора. В некоторых работах $\begin{bmatrix} I - 3 \end{bmatrix}$ рассматриваются системы, в которых свойства отдельных частиц зависят от траекторий последних. Однако для каталитических систем имеются свои особенности. Рассматриваются процессы, в которых под воздействием реакционной среды происходят необратимые, в данных условиях, изменения катализатора. В этом случае активность катализатора в любой момент времени зависит как от настоящих, так и от предыдущих условия. Собственно скорость изменения активности определяется только условиями процесса и состоянием катализатора в данный момент $\mathcal{R} = \mathcal{R}(\overline{c}, \overline{f}, \mathbf{e})$. Тогда активность катализатора в данный момент определится как

$$a(t + \Delta t) = a(t) + R(\bar{c}, T, a)\Delta t.$$

Переходя к пределу, получаем

$$\frac{da}{dt} = R(\bar{c}.T, a).$$

Добавляя к /2/ кинетические уравнения по всем базисным маршрутам данной реакции в зависимости от концентрации реагирующих веществ и температуры, например, в виде

$$r_{j}(\bar{c},T,a) = a(t)r^{*}(\bar{c},T), \qquad (3)$$

получаем кинетическую модель, позволяющую рассчитывать процессы с изменяющейся активностью при непрерывном изменении условий работы частицы в реакторе любого типа.

Для процессов, в которых частицы катализатора перемещаются в пространстве /гсевдоожиженный или движущийся слей/, зависимость активности от предыстории проявляется как зависимость от траекторий частиц, которые в течение короткого промежутка времени могут побывать в реэко различающихся условиях. В результате в любом элементарном объеме реакционного пространства будут находиться частицы с разной активностью. При моделировании таких процессов необходимо, следовательно, наряду с кинетической моделью /2/, /3/ задавать движение частиц. В данной работе для каталитической системы на основе статистического подхода удается либо получить в некоторых случаях уравнения движения частиц, либо разработать эффективный алгоритм моделиро-

вания их движения методом Монте-Карло.

Итак, пусть частица катализатора, воздействующая на реакционную среду и, в свою очередь, подвергающаяся обратному воздействию, движется в реакционном пространстве. Математическая зависимость активности частицы катализатора в этом случае выражается некоторым функционалом от траекторий частицы, $\xi(t)$, температуры T и концентрации C.

$$a(t) = F[\bar{\xi}(t), T, \bar{c}]. \qquad (4/$$

Запись в /4/ поля температуры и концентраций, не зависящего явно от отдельной частицы катализатора, соответствует предположению, что температура и концентрации в реакторе определяются усредненной по всем частицам плотностью активности.

$$\langle \alpha(\overline{z},t)\rangle = \frac{1}{\Delta V} \int_{\Delta V} d\overline{z} \sum_{i} \varkappa_{\Delta V} (\overline{\xi}(t)) F_{i}$$
 /5/
$$\varkappa_{\Delta V}(\overline{\xi}_{R}) = \begin{cases} 1, & \text{если} & \overline{\xi} & \text{лежит в } \Delta V \\ 0 & \text{в противном случае.} \end{cases}$$

$$\overline{z} - \text{точка в } \Delta V .$$

Пусть нам известен вид функционала в /4/ и мы можем получить траекторию любой частицы катализатора. Гогда моделирование системы состоит в выборе N "типичных" частиц катализатора и реализации их траекторий в реакторе, решении уравнений переноса для температуры и концентраций совместно с уравнениями /4/ и /5/.

Этот метод, впервые использованный в работе [4], требует для своей реализации большого объема памяти и высокого быстродействия ЭВМ. Поэтому имеет смысл рассмотреть более узкий класс траекторий и функционалов — марковские траектории и функционалы.

В случае, когда процесс изменения состояния частиц можно считать марковским, знание состояния в можент t и оператора перехода на шаг Δt полностью задает процесс /не требуется знать предыстории движения для моментов времени< t /. Изменение в общем случае можно записать в виде системы уравнений:

$$\frac{d\overline{\xi}}{dt} = \overline{u}, \qquad /6/$$

$$\frac{d\overline{u}}{dt} = \varphi(t, \overline{u}, \overline{\xi}), \qquad /7/$$

$$da = 0.7 = 0.5$$

$$\frac{da}{dt} = \Phi(T, \bar{c}, \bar{u}, \bar{\xi}), \qquad (8)$$

здесь $\overline{\mathcal{U}}$ - скорость частицы. При представлении траекторий необходимо учитывать, что

I/траектория частицы катализатора в реакторе носит случайный характер;

2/ желательно брать достаточно просто реализуемые на ЭВМ траск-

тории.

Поэтому будем представлять траектории частиц катализатора реализациями диффузионного процесса /для простоты одномерного/.

$$\xi(t+\Delta t) \approx \xi(t) + V_{\Delta}t + \sqrt{2D_{\kappa}} \Delta \dot{W}$$
, /9/
 $a(t+\Delta t) \approx a(t) + \Phi(T, \vec{c}, a) \Delta t$, /10/

- средняя скорость движения частицы по длине реактора;

- коэффициент диффузии частицы;

- источник случайных блужданий - нормально распределенная случайная величина со средним ноль и дисперсией 🎝 🏌

Уравнения /9/ и /IO/ можно рассматривать как определение нового марковского случайного процесса в двумерном пространстве ξ , α /. Введем функцию плотности вероятности, $f(\xi, a, t)\Delta \xi \Delta a =$ вероятности обнаружить частицу между Е и $\xi + \Delta \xi$ с активностью между $a.a+\Delta a.$ Стандартными методами можно получить для нее уравнение Фоккера-План-

$$\frac{\partial f(\xi, a, t, \theta)}{\partial t} = \frac{\partial}{\partial \xi} (\mathcal{D} \frac{\partial f}{\partial \xi}) - \frac{\partial}{\partial \xi} (vf) - \frac{\partial}{\partial a} (\Phi(T, \overline{c}, a)) f$$
 /11/

$$f(\xi, a, t, \theta) = f(\xi, a, t, \theta) = f_{\bullet}(\xi, a).$$

$$t \to \theta \qquad \theta \to t$$
/12/

В случае закрытой системы /нет ввода катализатора/ или в случае, когда возможен лишь вывод катализатора, достаточно умножить /II/ на общее число частиц катализатора в начале процесса, и мы получим плотность активности частиц катализатора /не имеющую вероятностного смысла/.

Покажем, как вывести уравнение для плотности в случае ввода частиц в реактор. Для этого рассмотрим следующую задачу: в момент $0 \le \theta \le t$ частица появляется в реакторе в точке $\xi = 0 + \mathcal{E}$ с некоторым распределением активности $\varphi(a)$ и затем может лишь выходить через границу $\xi = L$. Для плотности вероятности найти частицу в $\xi \in \xi, \xi + \Delta \xi$ с активностью $\alpha \in (\alpha, \alpha + \Delta \alpha)$, если она была введена времени 0 , получим уравнение:

$$\frac{\partial f(\xi, a, t, \theta)}{\partial t} = \frac{\partial}{\partial \xi} \left(\mathcal{D} \frac{\partial f}{\partial \xi} \right) - \frac{\partial}{\partial \xi} (v f) - \frac{\partial}{\partial a} \left(\Phi(T, \overline{c}, a) f \right), \quad /12/2$$

$$f(\xi, a, t, \theta) = \delta(\xi) \cdot \varphi(a) = f(\xi, a, t, \theta),$$

$$t \to \theta \qquad \theta \to t$$
/I2a/

 $\mathcal{D}\frac{\partial f}{\partial E} - vf$ = 0 - частица не может выйти влево и нет ввода через

, = 0 - нет обратной диффузии.

 $\frac{\partial \xi}{\partial \xi}$ | t = U — нет сорытном двинусти. За интервал времени $\Delta \theta$ в реактор будет введено $V(\theta)\Delta \theta$ тиц. Из них $V(\theta)\Delta \theta f(\xi, a, t, \theta)$ в среднем будет в момент t

 $\xi \in (\xi, \xi + \Delta \xi)$ и $\alpha \in (\alpha, \alpha + \Delta \alpha)$. Суммируя, получаем плотность:

$$n(\xi, a, t) = \int_{0}^{\xi} V(\theta) \int_{0}^{\xi} (\xi, a, t, \theta) d\theta.$$
 /13/

Умножая /12/ на $V(\theta)d\theta$ и интегрируя по θ , получаем уравнение:

$$\int_{0}^{z} d\theta V(\theta) \frac{\partial f(\xi, a, t, \theta)}{\partial t} = \frac{\partial}{\partial \xi} \left(D \frac{\partial n}{\partial \xi} \right) - \frac{\partial}{\partial \xi} (\bar{\alpha}n) - \frac{\partial}{\partial a} \left(\Phi(T, \bar{c}, a)n \right).$$

Используя равенство

$$\frac{\partial}{\partial t} \int_{0}^{t} V(\theta) \int_{0}^{t} (t, \theta) d\theta = \int_{0}^{t} V(\theta) \frac{\partial f}{\partial t} d\theta + V(t) \int_{0}^{t} (\xi, a, t, \theta),$$

получаем уравнение

$$\frac{\partial n}{\partial t} = \frac{\partial}{\partial \xi} \left(D \frac{\partial n}{\partial \xi} \right) - \frac{\partial}{\partial \xi} (\overline{V}n) - \frac{\partial}{\partial a} (\Phi n) + V(t) \int_{0}^{\infty} (\xi, a, t, \theta).$$

Так как, согласно /I2/, источник в /I4/ действует лишь на границе, перенесем его в граничное условие

$$\frac{\partial n}{\partial t} = \frac{\partial}{\partial \xi} \left(D \frac{\partial n}{\partial \xi} \right) - \frac{\partial}{\partial \xi} (\overline{\nu} n) - \frac{\partial}{\partial a} (\Phi n).$$
 /I4a/

Проинтегрировав /12s/ по ξ от θ до $\Delta \xi$, получим для $t > \theta$

$$\left(\mathcal{D} \frac{\partial n}{\partial \xi} - vn \right)_{\delta \xi} - \left(\mathcal{D} \frac{\partial N}{\partial \xi} - vn \right)_{0} = V(t) \varphi(a).$$

Учитывая /12/ и устремляя $\Delta \xi = 0$, получаем граничное условие на входе

$$\left. D \frac{\partial n}{\partial \xi} \right|_{0} = \overline{V} n \left|_{0} - V(t) \varphi(a); \right. \tag{15}$$

если V(t) = V , то обозначив $g(a) = n_o(a)$, получаем обычное граничное условие

$$\left. \frac{\partial n}{\partial \xi} \right|_{\rho} = \rho e(n - n_{\rho}).$$
 '/I5a/

На выходе, согласно /12/,

$$\frac{\partial n}{\partial \xi}\Big|_{\xi} = 0$$
.

Так как в уравнении / 14a/ функция зависит и от a, то необходимо еще одно граничное условие. Для его получения обратимся к уравнению / 10/. Из него видно, что если $\Phi(a_{max}) < 0$, то все частицы, имевшие в момент θ активность a_{max} , потеряют ее в момент $\theta + \Delta \theta = t$, так что не будет частиц с активностью a_{max} . Навоборот для случая $\Phi(a_{min}) > 0$ /рост активности/, не будет частиц с активностью a_{max} . Отсюда получаем граничные условия:

если
$$\Phi(a_{max}) < 0$$
 , то $n(\xi)a_{max}, t) = 0$, $t > 0$; если $\Phi(a_o) > 0$, то $n(\xi, a_o, t) = 0$, $0 \le \xi \le 1$;

Начальное условие:

$$n(\xi, a, 0) = 0$$
 — нет ни одной частицы в реакторе. /17/

$$\frac{\partial n(\xi_{i},...,\xi_{k};\alpha_{i},...,\alpha_{m},t)}{\partial t} = \sum_{i,j=1}^{n} \frac{\partial}{\partial \xi_{i}} (D_{ij} \frac{\partial n}{\partial \xi_{i}}) - \sum_{l=1}^{n} \frac{\partial}{\partial \xi_{i}} (\overline{u}_{i,n}) - \sum_{j=1}^{n} \frac{\partial}{\partial q_{j}} (\overline{u}_{i,n}) = \sum_{j=1}^{n} \frac{\partial}{\partial q_{j}} (\overline{u}_{i,n}) - \sum_{j=1}^{n} \frac{\partial}{\partial q_{j}} (\overline{u}_{i,n}) = \sum_{j=1}^{n} \frac{\partial}{\partial q_{j}} (\overline{u}_{i,n}) - \sum_{j=1}^{n} \frac{\partial}{\partial q_{j}} (\overline{u}_{i,n}) = \sum_{j=1}^{n} \frac{\partial}{\partial q_{j}} (\overline{u}_{i,n}) - \sum_{j=1}^{n} \frac{\partial}{\partial q_{j}} (\overline{u}_{i,n}) = \sum_{j=1}^{n} \frac{\partial}{\partial q_{j}} (\overline{u}_{i,n}) - \sum_{j=1}^{n} \frac{\partial}{\partial q_{j}} (\overline{u}_{i,n}) = \sum_{j=1}^{n} \frac{\partial}{\partial q_{j}} (\overline{u}_{i,n}) - \sum_{j=1}^{n} \frac{\partial}{\partial q_{j}} (\overline{u}_{i,n}) = \sum_{j=1}^{n} \frac{\partial}{\partial q_{j}} (\overline{u}_{i,n}) - \sum_{j=1}^{n} \frac{\partial}{\partial q_{j}} (\overline{u}_{i,n}) = \sum_{j=1}^{n} \frac{\partial}{\partial q_{j}} (\overline{u}_{i,n}) - \sum_{j=1}^{n} \frac{\partial}{\partial q_{j}} (\overline{u}_{i,n}) = \sum_{j=1}^{n} \frac{\partial}{\partial q_{j}} (\overline{u}_{i,n}) - \sum_{j=1}^{n} \frac{\partial}{\partial q_{j}} (\overline{u}_{i,n}) = \sum_{j=1}^{n} \frac$$

К уравнению /18/ нужно добавить уравнения для изменения температури и концентраций. В них, согласно /5/, входят средние активности

$$\langle a_i(\xi_1,\ldots,\xi_{\kappa_i}t)\rangle = \int da_i\ldots da_m \cdot a_i \cdot n(\xi_i,\ldots,\xi_{\kappa_i},\alpha_i,\ldots,\alpha_m,t).$$

Характерной особенностью уравнения /18/, связанной с вероятностной природой описания, является появление дополнительных координат $(a_1 \ldots a_m)$

Практически мы можем решать такое уравнение разностными методами в следующих случаях:

- I. Нестационарные задачи n=1, m=1 /с трудом n=2 /;
- 2. Стационарная задача n=2, m=1 /с трудом/;
- 3. n=1, m=2.

В случаях, когда лишь одна пространственная переменная и m>1, будет эффективным метод Монте-Карло.

Примеры:

Пример I. Если изменение активности описывается уравнением вида

$$\frac{da}{dt} = -k_a \times a , \qquad /19/$$

то используя /5 и 10/, получаем уравнение для средней активности

$$\mathcal{D}_{\kappa} \frac{d^2 \bar{a}}{dz^2} - V_{\kappa} \frac{d\bar{a}}{dz} - k_a \times \bar{a} = 0, \qquad (20)$$

Уравнение /20/ решалось совместно с уравнениями двухфазной модели кипящего слоя:

$$\frac{1}{pe}\frac{d^2x}{dz^2} - \frac{dx}{dz} + k(\bar{a})f(x) - Nu(x-y) = 0, \qquad /22/$$

$$\frac{dy}{dz} - Nu \frac{Q}{I-Q} (x-y) = 0 , \qquad (23)$$

$$X_K = QX + (1 - \dot{q})y$$
, - /24/

$$z=0, y=0, \frac{dx}{dz} = Pe(x-x_0),$$
 /25/
 $z=1, \frac{dx}{dz} = 0$

Рассмотрим влияние длины реактора на среднюю активность катали-

затора в реакторе. Результаты расчетов приведены на рис. I. В случае 6/ длина реактора была взята в 2 раза меньше, чем в случае а/. Естественно было ожидать и существенного уменьшения степени превращения на выходе из-за уменьшения времени контакта. Однако степень превращения уменьшилась лишь в I,05 раза. Это связано с тем, что катализатор меньшее время находится в реакторе, меньше теряет активность, в результате средняя активность высока /при взятой функции дезактивации /19//.

На данной модели было исследовано влияние гидродинамического режима движения частиц катализатора на степень превращения на выходе из реактора. Найдено, что конечная степень превращения меняется незначительно при переходе от идеального вытеснения к идеальному перемешиванию по катализатору /от 75% до 72%/ /рис. 2/. Однако различие в степенях превращения по длине реактора значительно, причем для идеального перемешивания оно выше почти по всей длине. Это значит, что в случае последовательной реакции избирательность будет ниже при идеальном перемешивании катализатора.

Применимость метода Монте-Карло исследовалась на задаче :

$$x_i - \frac{k_i(\bar{a})}{v}(1-x_i) = 0,$$
 /26/

$$x_{i} - x_{i-1} - \frac{k_{i}(\bar{a})}{V}(1 - x_{i}) = 0, i = 2,..., n-1,$$

$$x_{n} - x_{n-1} - \frac{K_{n}(\bar{a})}{V}(1 - x_{n}) = 0,$$

$$k_{i} = k^{o}(T)\bar{a},$$
/28/

$$WC_{K}T^{*} + VC_{P}T^{**} - [WC_{K}(1+b) + C_{P}V]T_{I} + bWC_{K}T_{2} + \theta k_{I}C_{0}(1-X_{I}) = 0,$$

$$[C_{P}V + (1+b)WC_{K}]T_{I-I} - [C_{P}V + (1+2b)WC_{K}]T_{I} + bC_{K}WT_{I+I} + \theta k_{I}C_{0}(1-X_{I}) = 0,$$

$$[C_{P}V + (1+b)C_{K}W]T_{R-I} - [C_{P}V + (1+b)WC_{K}]T_{R} + \theta k_{R}C_{0}(1-X_{R}) = 0.$$
/31/

Рассматривалась система реактор-регенератор. Реактор представлял собой последовательность I2 секций идеального перемешивания по катализатору с обменом между секциями. Предполагалось, что в регенераторе катализатор полностью восстанавливает свою активность. В практических расчетах бралось от 500 до 4000 частиц, по которым оценивалась средняя активность в каждой секции при заденном распределении температуры и концентрации. Насчитанная методом Монте-Карло средняя активность \overline{Q}_{i} , i=1,2,...,12, использовалась для определения новых значений температуры и концентраций и т.д. Процесс итераций оказался сходящимся. В табл. І представлены результаты статистического моделирования /столбцы I/ и численного решения /столбцы 2/.

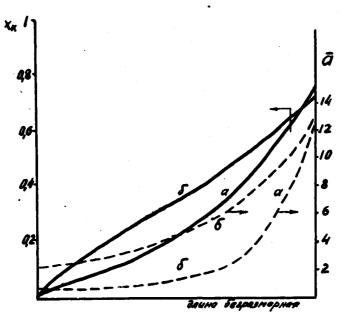


Рис. І. Влияние длины реактора на среднюю активность (-----) и степень превращения(-----); в случае "а" длина в 2 раза больше, чем в "5"

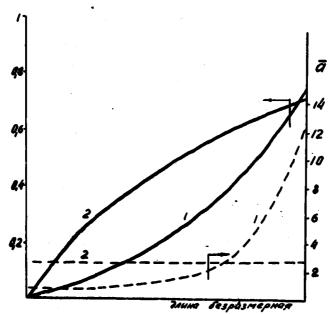


Рис. 2. Влияние режима движения частиц катализатора на среднюю активность --- и степень превращения _____.

I - идеальное вытеснение; 2 - идеальное перемеши-вание.

Результаты статистического моделирования и численного решения уравнений /26-31/.

Таблица І

	Температура, ^О К		Степень превращения		Средняя	активност
	I	2	I	2	I	2
ī	797,6	797,7	0,047	0,048	1,12	I,II
2	775,5	775,8	0,090	0,090	1,08	1,07
3,	756,5	756,7	0,126	0,126	1,05	1,03
4	739,8	739,8	0,158	0,158	1,00	0,99
5	725,0	724,8	0,186	0,185	0,96	0,95
6	712,0	711,5	0,210	0,210	16,0	0,91
7	700,5	699,6	0,232	0,233	0,87	0,87
8	690,3	689,0	0,251	0,252	0,82	0,84
9	681,3	679,6	0,268	0,271	0,78	0,81
10	673,5	671,5	0,284	0,287	0,76	0,74
ΙI	667,3	665,0	0,299	0,303	0,74	0,77
12	663,3	660,9	0,313	0,317	0,74	0,76

Предложенные методы могут использоваться для расчета процессов с изменяющейся активностью, проводимых в псевдоожиженном или движущемся слоях катализатора.

Поступила в редакцию 1.6.1970 г.

Литература

- I. Л.И.Хейфец, В.И.Мукосей, Р.В.Джагацпанян, ДАН СССР т.166.№6, 1966. 1405.
- 2. Л.И.Хейфец, Р.В.Джагацпанян, А.И.-Щербунов, Инженерис-физичес-кий журнал 4, 1968.,642.
 - З. Л.И.Хейфец, Автореферат кандидатской диссертации, М., 1969.
- 4. Joseph A. Fleck. Jr. The calculation of Nonlinear Radiation Transport by a Mohte Carlo method. Methods in Computational Physics, Academic Press, v. I, 1963, p. 43-65.
 - 5. В.В.Гнеденко, Курс теории вероятностей, М., Физматгиз, 1961.