О ЦЕЛОЧИСЛЕННОЙ ПОСТАНОВКЕ ОДНОЙ ЗАДАЧИ РАЗМЕЩЕНИЯ ОБЪЕКТОВ НА ЛИНИИ

Г.Г.Забудский

§ 1. Постановка задачи

Рассматривается задача размещения взаимосвязанных прямоугольных объектов на линии. В качестве ограничений на расположение объектов задаются минимально допустимые расстояния между ними, а критерием служит суммарная стоимость связей [1]. Такая постановка задачи актуальна, например, при размещении файлов на магнитном носителе и создании робототехнологических комплексов [2, 3]. Задача является NP -трудной даже для случая, когда все минимально допустимые расстояния совпадают [2]. Более общие постановки задачи предлагаются, например, в [4-6,8].

В данной работе исследуется отображение множества перестановок в подмножество вершин единичного куба и описываются способы построения допустимых решений исходной задачи по оптимальному решению непрерывной. В соответствии с подходом из [7] анализируется структура L -разбиения релаксационного многогранного множества задачи, строятся верхняя и нижняя оценки длины цепей дробных L -классов.

Пусть N — число размещаемых объектов. С помощью индексов \hat{L} и \hat{J} будем обозначать их номера, $\hat{L},\hat{j}=\overline{1,N}$. Задан N —вершинный неориентированный граф G(N,E), где $N=\{1,2,\ldots,n\}$ — множество номеров объектов, $E\subset N\times N$. Ребро $(\hat{L},\hat{J})\in E$, если имеется связь между объектами с номерами \hat{L} и \hat{J} , удельная стоимость которой равна $C_{ij}=C_{ji}>0$. Через C_{ij} ($C_{ij}=C_{ji}>0$) обозначим минимельно допустимые расстояния между ними. Учитывая введенные обозначения и используя $\{6\}$, модель можно записать как

$$f(u) = \sum_{(i,j) \in E} C_{ij} u_{ij} - min$$
 (1)

при условиях:

$$x_i - x_j + u_{ij} \ge 0,$$

$$x_j - x_i + u_{ij} \ge 0, \quad (i, j) \in E,$$
(2)

$$x_{i} - x_{j} - z_{ij} + A z_{ij} > 0$$
,
 $x_{j} - x_{i} - z_{ij} + A(1 - z_{ij}) > 0$,
$$z_{ij} - z_{ij} + A(1 - z_{ij}) > 0$$
,
(3)

$$\frac{Z_{ij} \in \{0, 1\},}{i - \overline{1, n - 1}}, \quad j = \overline{i + 1, n}$$
(4)

Значение булевой переменной \mathcal{Z}_{ij} указывает на взаимное расположение $\dot{\mathcal{L}}$ -го и $\dot{\mathcal{J}}$ -го объектов на линии. Если $\mathcal{Z}_{ij}=1$, то объект с номером $\dot{\mathcal{L}}$ находится левее $\dot{\mathcal{J}}$ -го, а если $\mathcal{Z}_{ij}=0$, то расположение обратное. Вектор $\mathcal{X}=(\mathcal{X}_1,\mathcal{X}_2,\ldots,\mathcal{X}_n)$ задает координаты объектов, а непрерывные переменные \mathcal{U}_{ij} , $(\dot{i}\dot{j})\in \mathcal{E}$, оценивают сверху расстояния между ними. Достаточно большая константа A>0 появляется при стандартной записи альтернативных условий с помощью булевых переменных \mathcal{L}_{9} и может быть выбрана, например, так: $A=(n+1)\cdot \max_{i,j}\mathcal{L}_{ij}$. Заметим, что неотрицательность \mathcal{U}_{ij} следует из ограничений (2), а \mathcal{X}_{j} , j=1,n, могут быть произвольного знака, но, не ограничевая общности, их можно считать неотрицательными.

Обозначим через \mathcal{B}^{m} множество вершин m -мерного единичного куба, где m=n(n-1)/2. Будем считать, что каждая компонента m -мерного булева вектора \mathcal{Z} , задающего \mathcal{B}^{m} , имеет вид \mathcal{Z}_{ij} , $i=\overline{1,n-1}$, $j=\overline{l+1,n}$, причем упорядочение компонент произвольное (но фиксированное!). Набор (\mathcal{Z}_{ij} , \mathcal{Z}_{iK} , \mathcal{Z}_{jK}) компонент вектора \mathcal{Z} , где i < j < K, будем называть трой-кой. Тройка считается противоречивой, если она имеет вид (0,1,0) либо (1,0,1). Вектор называется противоречивым, если он содержит хотя бы одну противоречивую тройку, иначе - непротиворечивым. Множество непротиворечивых векторов обозначим через $\mathcal{D}(\mathcal{B}^{m})$. Отметим, что иногда под тройкой будем понимать тройку номеров (9,5,t), 9< S< t.

Далее мы будем изучать выпуклое многогранное множество arDelta , определяемое системой линейных неравенств:

$$x_{i} - x_{j} - z_{ij} + A z_{ij} \ge 0,$$

$$x_{j} - x_{i} - z_{ij} + A(1 - z_{ij}) \ge 0,$$
(5)

$$0 \le Z_{ij} \le 1$$
, (6)
 $i = \overline{1, n-1}$, $j = \overline{i+1, n}$.

Оно тесно связано с релаксационным многогранным множеством \mathcal{Q}' , заданным ограничениями (2), (3), (6). По любой точке $(\mathcal{Z},\mathcal{R})\in\mathcal{Q}$ всегда можно построить точку из \mathcal{Q}' . Действительно, положим $\mathcal{U}_{ij}=\mathcal{R}_i-\mathcal{R}_j$, если $\mathcal{R}_i \neq \mathcal{R}_j$, и $\mathcal{U}_{ij}=\mathcal{R}_j-\mathcal{R}_i$, если $\mathcal{R}_i \neq \mathcal{R}_j$. Ясно, что

 $(z, x, u) \in \mathcal{Q}'$. Поэтому достаточно ограничиться изучением \mathcal{Q} , имеющим немного более простое описание.

8 2. Допустимые решения задачи (1)-(4)

Здесь мы покажем, как связаны множество непротиворечивых векторов $\mathcal{D}(\mathcal{B}^m)$ и допустимые решения задачи (1)-(4).

Обозначим через $\mathcal{P}(n)$ множество всех перестановок n элементов. Опишем процедуру, устанавливающую взаимно-однозначное соответствие между $\mathcal{P}(\mathcal{B}^m)$ и $\mathcal{P}(n)$.

Покажем, что каждому вектору $\mathcal{Z} \in \mathcal{D}(\mathcal{B}^m)$ однозначно соответствует перестановка $\mathcal{T}(\mathcal{Z}) \in \mathcal{P}(n)$. Для этого возьмем произвольный $\mathcal{Z} \in \mathcal{D}(\mathcal{B}^m)$ в построим $\mathcal{T}(\mathcal{Z})$. Построение будем проводить индуктивно. Пусть $\mathcal{Z}_{i,j}$. – некоторая компонента вектора \mathcal{Z} , ее значение однозначно определяет перестановку элементов $\dot{\mathcal{L}}$ и $\dot{\mathcal{J}}$. Так как $\mathcal{Z} \in \mathcal{D}(\mathcal{B}^m)$, то для любого $\mathcal{K} \neq \dot{\mathcal{L}}_{i,j}$, например, $\dot{\mathcal{L}} = \dot{\mathcal{L}} = \dot{\mathcal{L$

которые имеют значения

$$\underbrace{1,1,\ldots,1}_{S}$$
, o , o , \ldots o

где S может измениться от O до K. Предположим, что это не так, т.е. существуют g и f, g > f+1, такие, что \mathcal{Z}_{ip} $i_{K+1} = O$ и \mathcal{Z}_{iq} $i_{K+1} = 1$. Тогда, если $i_{F} < i_{G}$, то \mathcal{Z}_{ip} $i_{G} = 1$ и тройка $(\mathcal{Z}_{ip}i_{G},\mathcal{Z}_{ip}i_{K+1},\mathcal{Z}_{iq}i_{K+1})$ имеет вид (1,0,1). Для случая $i_{F} > i_{G}$ справедливо равенство $\mathcal{Z}_{ig}i_{F} = O$ и тройка $(\mathcal{Z}_{iq}i_{F},\mathcal{Z}_{iq}i_{K+1},\mathcal{Z}_{ip}i_{K+1})$ приобретает вид (0,1,0). Оба исхода противоречат тому, что $\mathcal{Z}_{i} \in \mathcal{D}(\mathcal{B}^{m})$.

Элемент \dot{l}_{K+1} располагается между \dot{L}_{p} и \dot{l}_{p+1} такими, что $\ddot{z}_{ip}\dot{l}_{K+1}=1$, $\ddot{z}_{ip+1}\dot{l}_{K+1}=0$. Если $\ddot{z}_{is}\dot{l}_{K+1}=0$, $S=\overline{l_{i}K}$, то перестановка (K+1)-го элемента имеет вид (\dot{l}_{K+1} , \dot{l}_{1} ,..., \dot{l}_{K}). а если $\ddot{z}_{is}\dot{l}_{K+1}=1$, $S=\overline{l_{i}K}$, то (\dot{l}_{1} , \dot{l}_{2} ,..., \dot{l}_{K} , \dot{l}_{K+1}). Если перестановке K элементов соответствует булев вектор с числом компонент K(K-1)/2,

а для определения положения очередного элемента необходим K -вектор, тогда перестановке K+1 элемента соответствует булев вектор с числом компонент

$$\frac{K(K-1)}{2}+K=\frac{K(K+1)}{2}.$$

Таким образом, при построении модели (1)-(4) используется отображение множества $\mathcal{P}(n)$ в подмножество вершин единичного куба \mathcal{B}^m . Рассмотрим некоторые свойства этого отображения.

Компонента вектора $\mathcal{Z} \in \mathcal{D}(\mathcal{B}^m)$ называется инвертируемой, если при изменении ее значения на противоположное получается вектор из $\mathcal{D}(\mathcal{B}^m)$. Легко заметить, что инвертируемыми являются те и только те компоненты $\mathcal{Z}_{i,j}$ вектора \mathcal{Z} , у которых индексы i и j соответствуют соседним элементам в перестановке $\mathcal{T}(\mathcal{Z}) \in \mathcal{P}(n)$, так как инвертирование означает изменение взаимного расположения этих элементов в $\mathcal{T}(\mathcal{Z})$.

Пусть неориентированный граф H образован следующим образом: его вершины – множество $\mathfrak{D}(\mathcal{B}^m)$ – соединяются ребром, когда соответствующие им векторы являются соседними в \mathcal{B}^m , т.е. отличаются одной координатой. Отметим свойства этого графа.

- 1. Граф H является связным. Действительно, произвольную перестановку можно получить, переставляя соседние элементы, поэтому любые две вершины в графе H соединены путем.
- 2. Степень каждой вершины в \mathcal{H} равна $\mathcal{H}-1$. Это следует из того, что в любой перестановке имеется $\mathcal{H}-1$ пара соседних элементов, поэтому инвертируемых компонент $\mathcal{H}-1$, а инвертирование компоненты означает переход в соседнюю вершину \mathcal{H} .
- 3. Для произвольной пары индексов (i,j) на любой из граней выпуклой оболочки множества \mathcal{B}^m , лежащей в гиперплоскости $\mathcal{Z}_{ij} = 0$ или $\mathcal{Z}_{ij} = 1$,

имеется n!/2 вершин графа H. Это следует из того, что фиксирование взаимного расположения двух элементов в перестановке сокращает число перестановок до n!/2.

Покажем, какая связь существует между множеством $\mathcal{D}(\mathcal{B}^m)$ и точками $(x, z) \in \mathcal{A}$, у которых $z \in \mathcal{B}^m$.

Утверждение 2.1. Если $(x, Z) \in \mathcal{L}$ и $Z \in \mathcal{B}^m$, то $Z \in \mathcal{D}(\mathcal{B}^m)$. Обратно, для всякого $Z \in \mathcal{D}(\mathcal{B}^m)$ найдется x такой, что $(Z, x) \in \mathcal{L}$.

Доказательство. Пусть $(\mathcal{Z}, \mathcal{X}) \in \mathcal{Q}$, $\mathcal{Z} \in \mathcal{B}^m$: $\mathcal{Z} \notin \mathcal{Q}(\mathcal{B}^m)$. Тогда в \mathcal{Z} найдется противоречивая тройка $(\mathcal{Z}_{ij}, \mathcal{Z}_{iK}, \mathcal{Z}_{jK})$. Если она имеет вид (0,1,0), то, подставляя эти значения в соответствующие неравенства из (5), имеем:

$$x_i - x_j - z_{ij} \ge 0$$
, $x_K - x_i - z_{iK} \ge 0$, $x_j - x_K - z_{jK} \ge 0$.

Складывая первое и третье неравенства, получаем противоречие со вторым, так как 795 > 0 для всех $9 \neq 5$. Аналогично рассматривается случай трой-ки (1,0,1). Из полученного противоречия следует, что $\mathcal{Z} \in \mathcal{D}(\mathcal{B}^m)$.

Покажем, что для каждого $\mathcal{Z}\in\mathcal{D}(\mathcal{B}^m)$ можно найти $\mathcal{X}\in\mathcal{R}^n$ такой, что $(\mathcal{Z},\mathcal{X})\in\Omega$. Пусть вектору \mathcal{Z} соответствует перестановка $\mathcal{X}(\mathcal{Z})=(i_1,i_2,\ldots,i_n)$. Тогда \mathcal{Z} можно построить, например, так: положить $\mathcal{X}_{i_*}=\mathcal{C}$, где \mathcal{C} – произвольная константа, а

$$x_{ip} = \max_{1 \leq s \leq p} \left\{ x_{ip-s} + \tau_{ip-s} i_p \right\}$$

для любого $1 . Легко проверить, что <math>(z, x) \in \mathcal{I}$. Утверждение доказано.

Отметим, что если C и Z_{ij} , $i=\overline{1,n-1}$, $j=\overline{i+1,n}$, – цельше числа, то вектор, построенный описанным выше способом, будет целочисленным.

Утверждение 2.2. Для произвольного $(\mathbf{Z},\mathbf{X})\in\mathcal{A}$, $\mathbf{Z}\notin\mathcal{B}^{m}$, подходящим округлением компонент вектора \mathbf{Z} можно построить $\mathbf{Z}\in\mathcal{D}(\mathcal{B}^{m})$.

Доказательство. Пусть $(Z,\mathcal{R})\in \mathcal{A}$. Упорядочим компоненты вектора \mathcal{R} по неубыванию. Если для некоторых i и j выполиянется $\mathcal{R}_i = \mathcal{R}_j$, то их порядок фиксируем произвольно. Запишем индексы компонент полученного вектора в виде перестановки $\mathcal{T}=(i_1,i_2,\ldots,i_n)$. Утверждается, что ей соответствует вектор $Z\in\mathcal{D}(\mathcal{B}^m)$, являющийся одним из округлений Z. Действительно, если $Z_{qs}=0$ для некоторых Q и S, то $X_{q}>X_{s}$, так как $X_{q}-X_{s}>\mathcal{D}_{qs}$, а тогда, по построению \mathcal{T} и соответствию $\mathcal{D}(\mathcal{B}^m)$ и $\mathcal{P}(n)$, кмеем $Z_{qs}=0$. Аналогично рассматривается случай $Z_{qs}=1$. Дробные компоненты Z_{j} K вектора Z округляются до значений Z_{j} K. Утверждение доказано.

Отметим, что утверждение 2.2 дает один из способов построения допустимых решений задачи (1)-(4) по оптимальному решению непрерывной задачи. Это построение можно производить с учетом значения целевой функции, например, следующим образом. Пусть $x_{i_1} < x_{i_2} < \dots < x_{i_{S-1}} < x_{i_S} = x_{i_{S+1}} < x_{i_{S+2}} < \dots$, тогда если

$$\sum_{k=1}^{s-1} C_{i_k i_s} > \sum_{k=1}^{s-1} C_{i_k i_{s+1}} \prod_{k=s+2}^{n} C_{i_k i_s} < \sum_{k=s+2}^{n} C_{i_k i_{s+1}}.$$

то целесообразно взять перестановку $(\dot{L}_{11}\dot{L}_{2},\ldots,\dot{L}_{S-1},\dot{L}_{S},\dot{L}_{S+1})$, в противном случае $(\dot{L}_{1},\dot{L}_{2},\ldots,\dot{L}_{S-1},\dot{L}_{S+1},\dot{L}_{S})$.

§ 3. L - структура релаксационного многогранного множества

Напомним некоторые определения [7]. Пусть Z^{κ} – множество всех κ – мерных целочисленных векторов. Тогда L – разбиение пространства R^{κ} – задается следующим образом.

Возьмем $x,y\in R^k$, $x\succ y$, где \succ - знак лексикографического сравнения. Будем говорить, что x эквивалентна y, $x \stackrel{\checkmark}{\sim} y$, если не существует $z\in Z^k$ такой, что $x\geqslant z\geqslant y$. Отметим, что каждая точка $z\in Z^k$ образует отдельный класс, остальные классы состоят из нецелочисленных точек и называются дробными. Для произвольного $W\subseteq R^k$ через W/L обозначим фактор-множество, образованное отношением эквивалентности L. Элементы множества W/L называются L -классами. Будем говорить, что множество V лексикографически больше V', и писать $V\succ V'$, если $y\succ y'$ для всех $y\in V$, $y'\in V'$. Для такого бинарного отношения W/L является лишейно упорядоченным. Любой дробный L -класс из W/L может быть записан в виде

 $V=W\cap\{y:y=a_i,i=1,2,\ldots,s-1,a_s< y_s< a_s+1\}$, где a_i , $i=\overline{1,s-1}$, s, — некоторые целые числа, $s\in\{1,2,\ldots,k\}$. Пусть $Z^{k,t}$ — множество всех k —мерных векторов, у которых первые t компонент целые. Подмножество Q дробных L —классов называется целью, если для любых $V,V'\in Q$, (V>V') не найдется точки $z\in W\cap Z^{k,t}$ такой, что $V\geqslant z\geqslant V'$. Обозначим через C(W) множество всех целей, порожденных W, и определим степень "дробности" W с помощью функции

 $\Psi(W) = \sup \{ |Q| : Q \in C(W) \}.$

Докажем утверждение, которое будет использоваться при построении верхней и нижней оценок $\Psi(\mathcal{A})$.

Утверждение 3.1. Пусть $(\widehat{\mathcal{Z}},\widehat{\mathcal{X}})\in\Omega$, $\widehat{\mathcal{Z}}\in\Omega(B^m)$: $\widehat{\mathcal{Z}}_{jK}$ — некоторая компонента вектора $\widehat{\mathcal{Z}}$. Тогда в Ω лежит вектор $(\widehat{\mathcal{Z}},\widehat{\mathcal{Z}})$, который получается заменой значения $\widehat{\mathcal{Z}}_{jK}$ на подходящее $\mathcal{E}\in(0,1)$.

Доказательство. Вектор $(\mathcal{Z}',\mathcal{R})$ отличается от $(\widehat{\mathcal{Z}},\widehat{\mathcal{R}})$ значением одной компоненты с индексами (j,K), поэтому достаточно показать, что найдется число $\mathcal{Z}_{j_K} \in (0,1)$, удовлетворяющее паре неравенств из (5):

$$\hat{x}_{j} - \hat{x}_{\kappa} - z_{j\kappa} + A z_{j\kappa} \geqslant 0,$$

$$\hat{x}_{\kappa} - \hat{x}_{j} - z_{j\kappa} + A(1 - z_{j\kappa}) \geqslant 0.$$
(7)

Обозначим $\Delta_0 = \frac{1}{A} (\hat{x}_{\kappa} - \hat{x}_{j} + Z_{j\kappa}), \Delta_1 = \frac{1}{A} (\hat{x}_{\kappa} - \hat{x}_{j} - Z_{j\kappa} + A)$, тогда из (7) получим

$$\Delta_0 \leq \exists_{j\kappa} \leq \Delta_1$$

Так как $\Delta = \Delta_1 - \Delta_0 = \frac{1}{A}(A - 2zj\kappa) > O$ из выбора A , то система (7) имеет решение. Если $\hat{\mathcal{Z}}_{j\kappa} = O$, то $\hat{\mathcal{Z}}_j - \hat{\mathcal{Z}}_{\kappa} \geqslant 2j\kappa$ и $\Delta_1 \in (0,1)$, тогда в качестве \mathcal{E} можно взять Δ_1 . Если $\hat{\mathcal{Z}}_{j\kappa} = 1$, то $\mathcal{Z}_{\kappa} - \mathcal{Z}_j \geqslant 2j\kappa$ и $\Delta_0 \in (0,1)$, тогда \mathcal{E} можно положить равным Δ_0 . Утверждение доказано.

Отметим, что в \mathcal{Q} содержатся точки вида ($\mathcal{Z}^1, \mathcal{X}^1$), ($\mathcal{Z}^2, \mathcal{X}^2$), где $\mathcal{Z}^1, \mathcal{Z}^2 \in \mathcal{D}(\mathcal{B}^m)$, $\mathcal{Z}^1 = (1,1,...,1)$, $\mathcal{Z}^2 = (0,0,...,0)$. Отсюда и из определения цепи дробных \mathcal{L} -классов следует, что максимальная цепь в \mathcal{L} ограничена снизу и сверху точками вида ($\mathcal{Z}'', \mathcal{X}''$), ($\mathcal{Z}', \mathcal{X}'$), где $\mathcal{Z}', \mathcal{Z}'' \in \mathcal{D}(\mathcal{B}^m)$, а также что при оценивании длины цепей достаточно рассматривать лишь первые \mathcal{M} компонент векторов из \mathcal{L} . Используя это замечание, построим верхнюю и нижнюю оценки для максимальной цепи дробных \mathcal{L} -классов в \mathcal{L}/\mathcal{L} .

Через $\widetilde{V}_{
ho t}$ обозначим дробный Δ -класс из Ω , у представителей которого первая дробная компонента имеет индексы (
ho,t) , а $V_{
ho t}$ - множество векторов, полученное из класса $\widetilde{V}_{
ho t}$ отбрасыванием последних n координат его элементов. Множества $V_{
ho t}$ мы тоже будем называть Δ - классами. Из отмеченного выше следует, что при выводе оценок вместо $\widetilde{V}_{
ho t}$ достаточно рассматривать множества $V_{
ho t}$. Порядок компонент в векторах \mathcal{Z} , $(\mathcal{Z}, \mathcal{Z}) \in \Omega$, произвольный, но фиксированный.

Нетрудно показать, что длина максимальной цепи дробных \mathcal{L} -классов в \mathcal{L}/\mathcal{L} не превосходит 2m . Если это не так, то найдутся три дробных \mathcal{L} -класса, у представителей которых индексы первых дробных компонент совпадают. Пусть $V_{\rho t}^1 \geq V_{\rho t}^2 \geq V_{\rho t}^3$. Тогда, воспользовавшись утверждением 2.2,

можно путем подходящего округления точки $\overline{z} \in V_{pt}^2$ построить точку $\overline{z} \in \mathcal{D}(\mathcal{B}^m)$ такую, что выполняется одно из двух условий: либо $V_{pt}^1 \succ \overline{z} \succ V_{pt}^2 \succ V_{pt}^2 \succ V_{pt}^3$, т.е. эти \angle -классы разделяются целой точкой. Отсюда следует, что максимальная цепь в \mathcal{D}/\mathcal{L} не превосходит \mathcal{D}_{pt} . Далее, учитывая специфику задачи, построим более точную верхнюю оценку.

Обозначим через I(n) количество неинвертируемых компонент в произвольном векторе $\mathcal{Z} \in \mathfrak{D}(\mathcal{B}^m)$. Из § 2 следует, что I(n) = (n-1)(n-2)/2, так как число инвертируемых компонент равно n-1. Будем предполагать также, что n-1 вектор-строка, т.е. можно говорить, что одна компонента этого вектора расположена левее или правее другой.

Т е о р е м а 3.1. Для произвольного упорядочения булевых переменных справедлива оценка

$$\Psi(\Lambda) \leq (n-1)(n-2)+1$$
.

Доказательство. Возьмем произвольные точки $\mathcal{Z}', \mathcal{Z}'' \in \mathcal{D}(\mathcal{B}^m)$. Пусть $\mathcal{Z}' \succ \mathcal{Z}''$ такие, что не существует $\mathcal{Z} \in \mathcal{D}(\mathcal{B}^m)$, удовлетворяющей условию $\mathcal{Z}' \succ \mathcal{Z} \succ \mathcal{Z}''$. Оценим максимальное количество дробных \mathcal{L} -классов между ними. Запишем \mathcal{Z}' и \mathcal{Z}'' в виде $\mathcal{Z}' = (t, \mathcal{Z}'_{qs}, \mathcal{S}'')$, $\mathcal{Z}'' = (t, \mathcal{Z}'_{qs}, \mathcal{S}'')$. где (q,s) — индексы первой компоненты такой, что $\mathcal{Z}'_{qs} = 1$, $\mathcal{Z}''_{qs} = 0$, t — набор компонент, которые стоят левее (q,s), и их значения в \mathcal{Z}' и \mathcal{Z}'' совпадают, а \mathcal{S}' и \mathcal{S}''' — совокупности остальных компонент. Отметим свойства, которым удовлетворяют наборы \mathcal{S}' и \mathcal{S}'' , являющиеся следствием выбора \mathcal{Z}' и \mathcal{Z}'' , а именно:

- 1) значения 1 в δ' и О в δ'' имеют только неинвертируемые компоненты;
- 2) δ' является лексикографическим минимумом среди всех таких δ , что $(t,1,\delta)\in\mathcal{D}(\mathcal{B}^m)$, а δ'' лексикографическим максимумом среди всех таких δ , что $(t,0,\delta)\in\mathcal{D}(\mathcal{B}^m)$.

Рассмотрим множество дробных Δ -классов из Ω/Δ , образованных подстановкой вместо единиц в \mathcal{S}' и нулей в \mathcal{S}'' подходящих дробных величин. По утверждению 3.1, такие найдутся, и, очевидно, соответствующие дробные Δ -классы будут лежать между \mathcal{Z}' и \mathcal{Z}'' . Так как Ω выпукло, то существует дробный Δ -класс \widetilde{V} q s такой, что $\mathcal{Z}' \succ V_q$ $s \succ \mathcal{Z}''$. Обозначим совокупность указанных Δ -классов через U. Покажем, что других дробных Δ -классов между \mathcal{Z}' и \mathcal{Z}'' нет.

Отметим, что у любого дробного \angle -класса, находящегося между \mathcal{Z}' и \mathcal{Z}'' , значения компонент до первой дробной совпадают со значениями соответствующих компонент \mathcal{Z}' или \mathcal{Z}'' . Действительно, если это не так, то, по утверждению 2.2, округлением любого представителя этого \angle -класса получим точку $\overline{\mathcal{Z}} \in \mathcal{D}(\mathcal{B}^m)$, разделяющую \mathcal{Z}' и \mathcal{Z}'' .

Пусть $\widetilde{V}_{\kappa e}$ — произвольный дробный \mathcal{L} —класс такой, что $\mathcal{Z}' \succ V_{\kappa e} \succ \mathcal{Z}''$. Покажем, что $\widetilde{V}_{\kappa e} \in \mathcal{U}$. Из отмеченного выше и свойств наборов \mathcal{S}' и \mathcal{S}'' следует, что $\mathcal{Z}'_{\kappa e} = 1$ либо $\mathcal{Z}''_{\kappa e} = 0$, так как в противном случае $V_{\kappa e} \succ \mathcal{Z}'$, либо $\mathcal{Z}'' \succ V_{\kappa e}$. Отсюда $\widetilde{V}_{\kappa e} \in \mathcal{U}$.

Оценим мошность множества $\mathcal U$: заметим, что количество единиц в $\mathcal S'$ и нулей в $\mathcal S'$ не более $\mathcal I(n)$. Тогда

$$\Psi(\mathcal{L}) \leq 2 \cdot I(n) + 1 = (n-1)(n-2) + 1$$
.

Теорема доказана.

Теперь покажем, что при определенном порядке компонент в векторах из $\mathcal{D}(\mathcal{B}^m)$ существуют цепи дробных Δ -классов длины больше m. Для этого специальным образом построим точки \mathcal{Z}^l и \mathcal{Z}^l из $\mathcal{D}(\mathcal{B}^m)$ и оценим снизу длину цепи дробных Δ -классов между ними.

Определим порядок компонент векторов из $\mathfrak{D}(\mathcal{B}^m)$ следующим образом. Первые n-2 компоненты имеют пары индексов

$$(n-1,n)(n-2,n-1),\ldots,(\left[\frac{n}{2}\right]+2,\left[\frac{n}{2}\right]+3),(\left[\frac{n}{2}\right],\left[\frac{n}{2}\right]+2)$$

$$(\begin{bmatrix} \frac{L}{2} \end{bmatrix} - 1, \begin{bmatrix} \frac{L}{2} \end{bmatrix} + 1), (\begin{bmatrix} \frac{L}{2} \end{bmatrix} - 2, \begin{bmatrix} \frac{L}{2} \end{bmatrix} - 1), \dots, (1, 2) ,$$

причем упорядочение их между собой может быть произвольным. Далее расположены две компоненты с индексами $(1,h),(\lfloor \frac{h}{2} \rfloor,\lfloor \frac{n}{2} \rfloor+1)$, правее которых порядок компонент нам не важен. При указанном порядке компонент вектору \mathcal{Z}' будет соответствовать перестановка \mathcal{T}' , а \mathcal{Z}'' – перестановка \mathcal{T}'' . Эти перестановки имеют вид:

$$\pi' = (\begin{bmatrix} \frac{n}{2} \end{bmatrix} + 1, \begin{bmatrix} \frac{n}{2} \end{bmatrix} - 1, \dots, 1, n, n-1, \dots, \lfloor \frac{n}{2} \end{bmatrix} + 2, \lfloor \frac{n}{2} \rfloor + 2, \lfloor \frac{n}{2} \rfloor),$$

$$\pi'' = (n, n-1, \dots, \lfloor \frac{n}{2} \rfloor + 2, \lfloor \frac{n}{2} \rfloor, \lfloor \frac{n}{2} \rfloor + 1, \lfloor \frac{n}{2} \rfloor - 1, \dots, 2, 1).$$

Нетрудно заметить, что $\mathcal{J}'' = (O,O,\dots,O,1,O,\dots,O)$, где значение f принимает компонента с индексами $([\frac{P}{2}],[\frac{P}{2}]+1)$. Из-за сложности обозначений мы \mathcal{L}' выписывать не будем, а ниже рассмотрим его на примере. Отметим, что по значениям первых \mathcal{R} компонент векторов \mathcal{L}' и \mathcal{L}'' однозначно определяются значения всех остальных, так как по ним строятся перестановки \mathcal{L}' и \mathcal{L}'' . Это легко проверяется непосредственно. Ясно, что $\mathcal{L}' \succ \mathcal{L}''$, так как $\mathcal{L}_{1n} = 1$, а $\mathcal{L}_{1n}'' = 0$ и значения компонент до (1,h) в \mathcal{L}' и \mathcal{L}'' совпадают. Это следует из того, что взаимное расположение элементов, номера которых служат индексами компонент левее (1,h), в \mathcal{L}'' и \mathcal{L}'' одинаковое. Покажем, что не существует $\mathcal{L} \in \mathcal{D}(\mathcal{B}''')$ такого, что $\mathcal{L}' \succ \mathcal{L} \succ \mathcal{L}''$.

Предположим противное, т.е. найдется компонента с индексами (9, 3) такая, что выполняется одно из двух условий:

$$(1,n)$$
 ([元],[元]+1) ... (9,5) ...

 $\exists 0...0 1 0 ...0 1 .$

где первая строка – это индексы компонент, а \mathcal{A}_{K} , $K = \overline{1, P}$, – либо O, либо 1. Как уже отмечалось, значениями первых R компонент векторов \mathcal{Z}' и \mathcal{Z}'' однозначно определяются значения остальных, откуда следует, что оба случая невозможны. В результате получаем, что не существует $\mathcal{Z}(\mathcal{D}(\mathcal{B}^m))$, разделяющего \mathcal{Z}' и \mathcal{Z}'' .

Нетрудно подсчитать, что количество расположенных правее (1,n) неинвертируемых компонент со значением O в \mathcal{Z}'' равно $\mathcal{R}(n-1)/2-\mathcal{R}$. Число расположенных правее (1,n) неинвертируемых компонент со значением 1 в \mathcal{Z}' легко определяется из вида перестановки \mathcal{R}' . Если \mathcal{R} четное, то оно равно $\mathcal{R}^2/4-2$, если \mathcal{R} нечетное, то $(n-1)^2/4-2+(n-1)/2$. С учетом дробного \mathcal{L} -класса \mathcal{V}_{1R} нижнюю оценку функции $\mathcal{L}(\mathcal{Q})$ дает следующая

T е о р е м а 3.2. При указанном упорядочении булевых переменных справедлива оценка

$$\Psi(\Omega) \geqslant \begin{cases} \frac{(n-1)(n-2)}{2} + \frac{n^2-8}{4}, & n \text{ четное;} \\ \frac{(n-1)(n-2)}{2} + \frac{n^2-9}{4}, & n \text{ нечетное.} \end{cases}$$

Заметим, что при n>5 нижняя оценка больше количества булевых переменных, которое равно m.

Покажем на примере, как строить цепь дробных \triangle -классов для n=4 способом, предложенным выше. Перестановки π' и π'' имеют вид $\pi'=(3,1,4,2)$, $\pi''=(4,2,3,1)$, а векторы π' и π'' – вид

Тогда цепь дробных \angle -классов $\widehat{V}^1 > \widehat{V}^2 > \widehat{V}^3 > \widetilde{V}^4 > \widehat{V}^5$ выпишем с помощью компонент $\mathbf{Z}^{\dot{L}}$ их представителей $\dot{\mathcal{L}} = \overline{\mathbf{1,5}}$:

$$\mathcal{Z}^{1} = (0,0,1,0,1,\mathcal{E}_{1})$$
 $\mathcal{Z}^{4} = (0,0,0,1,\mathcal{E}_{1},0)$ $\mathcal{Z}^{2} = (0,0,1,0,\mathcal{E}_{2},1)$ $\mathcal{Z}^{5} = (0,0,0,1,0,\mathcal{E}_{3})$ $\mathcal{Z}^{3} = (0,0,\mathcal{E}_{3},0,1,1)$ $\mathcal{E}_{i} \in (0,1), i = 1,5$. Поступила в ред.-изд. отдел 7 мая 1990 г.

Литература

- I. Забудский Г.Г. Об одной задаче размещения объектов на линии// Тез. докл. 4 Всесоюз. сов. по методам и программам решения оптимизационных задач на графах и сетях, Новосибирск, 1989. Ч. 2. С. 29.
- 2. Picard J.C., Queyranne M. On the One-Dimensional Space Allocation Problem // Oper. res. 1981. Vol. 29. P 371-391.
- 3. Павловский В.Е., Прудковский С.Г. Исследование и верификация моделей робототехнологических комплексов. М., 1986. 32 с. (Препринт № 13 ИПМ).
- 4. Забудский Г.Г., Колмычевская Н.В., Леванова Т.В. Оптимизация размещения технологического оборудования на генплане // Тез. докл. 10 Всесовз. симп. по системам программного обеспечения решения задач оптимального планирования, М., 1988. С. 148.
- 5. Забудский Г.Г. Об оценках стоимости связывающей сети в некоторых задачах размещения // Лискретная оптимизация и анализ сложных систем. Новосибирск, 1989. С. 10-25.
- 6. Жак С.В., Эжиченко А.Б. Комбинаторные методы решения задачи размещения помещений в производственном здании // Автоматизация архитектурно-строительного проектирования промышленных предприятий. Ростов-на-Дону, 1979. С. 87-92.
- 7. Колоколов А.А. Алторитмы отсечения и некоторые разбиения множеств // Дискретная оптимизация и численные методы решения прикладных задач. - Новосибирск, 1986. - С. 50-67.
- 8. Love R.F., Wong J.Y. On Solving a One-Dimensional Space Allocation Problem With Integer Programming // INFOR. 1976. Vol. 14, N 2. P. 139-143.
- 9. Корбут А.А., Финкельштейн Ю.Ю. Дискретное программирование / М.: Наука, 1969. 368 с.