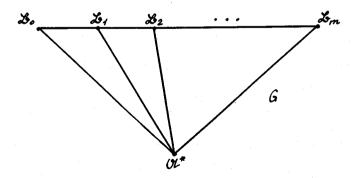
ОПТИМИЗАЦИЯ ОБСЛУЖИВАНИЯ СТРОИТЕЛЬСТВА ЛИНЕЙНЫХ ОБЪЕКТОВ С.В.Севастьянов

В настоящей работе исследуется оптимизационная задача, которую можно рассматривать как обобщение транспортной задачи на сети специального вида. Задача возникла в связи с исследованием проблемы оптимизации транспортного обслуживания строительства БАМ. Первая попитка моделирования подобного процесса была предпринята в работе [I]. Предлагаемая в настоящей работе модель обслуживания строительства является очередным приближением к реальной ситуации. Есть основание полагать, что описанный ниже метод решения данной задачи в целом применим для решения аналогичных задач оптимизации обслуживания строительства линейных объектов.

§ I. Постановка задачи

В рассматриваемой транспортной задаче /I/ имеется один пункт производства \mathcal{U}^* и множество пунктов потребления, образующее на плоскости с метрикой непрерывный однопараметрический (линейный) объект \mathcal{O} , называемый в дальнейшем магистралью. Некоторые точки магистрали $\mathcal{S}_{\mathcal{C}}$ являются вершинами транспортной сети \mathcal{G} . Последняя представлена на рисунке (магистраль изображается цепью $\mathcal{S}_{\mathcal{O}}, \mathcal{S}_{\mathcal{O}}, \ldots, \mathcal{S}_{\mathcal{O}}$).



На множестве точек магистрали $\{\mathcal{Z}\}$ задан параметр $\mathcal{N}(\mathcal{Z})$, равный длине отрезка магистрали от точки \mathcal{Z} до точки \mathcal{Z} . Задан также функция плотности потребления $\rho(\mathcal{Z})$.

В задачу введен параметр-время, так что весь поток грузов (притекающий к вершинам \mathcal{L}_i из пункта \mathcal{U}^* и распределяемый затем вдоль магистрали с плотностью $\rho(\infty)$)разбивается на \mathcal{T} после-

довательных потоков, технологически увязанных друг с другом. Для каждого шага t=1, T транспортная сеть имеет свои параметры, которые мы можем выбирать из некоторого допустимого (конечного) множества. Более конкретно, каждое ребро $(\mathcal{U},\mathcal{L})$ может иметь одну j-я категория ребра $(\mathcal{Ol}^*,\mathcal{S}_{\mathcal{C}})$ характеризуетиз β ; категорий, ся тремя параметрами:

 C_{j}^{i} — (шаговая) пропускная способность, β_{j}^{i} — стоимость единичного потока, S_{j}^{i} — стоимость категории. Каждое ребро $(\mathcal{L}_{i-1},\mathcal{L}_{i})$ также может иметь несколько различ—

ных категорий, изменяющихся по шагам; но в отличие от ребер $(\mathcal{U},\mathcal{Z})$ это изменение строго детерминировано, так что на шаге $\,t\,$ ребро $(\mathcal{S}_{i-1}, \mathcal{S}_i)$ характеризуется заранее известными параметрами: $\overline{\mathcal{G}_t^i}$ — пропускной способностью и $\overline{\mathcal{G}_t^i}$ — стоимостью единичного потока на единичном расстоя—

нии.

Грузопоток должен удовлетворять следующим технологическим ограничениям:

I. Поток, протекающий по какому-либо ребру $(\mathcal{U},\mathcal{S}_i)$, распределяется в течение всего периода времени вдоль некоторого отрез-ка магистрали $\mathcal{Q}_i = (\mathcal{S}_i^1, \mathcal{S}_i^2)$ такого, что если $\mathcal{Q}_i \neq \emptyset$, то $\mathcal{S}_i \in \mathcal{Q}_i$. П. Для любых i,j $(i \neq j)$ имеет место $\mathcal{Q} = \bigcup_{i=0}^n \overline{\mathcal{Q}_i}$ и $\mathcal{Q}_i \cap \mathcal{Q}_j = \emptyset$,

где $\overline{\mathcal{Q}}_i$ – замыкание отрезка \mathcal{Q}_i ; Ш. Для любых $i=\overline{\mathcal{Q}_im}$, $t=1,\overline{I}$ поток t –го шага ребра $(\mathcal{O}t^*,\mathcal{B}_i)$ распределяется вдоль отрезков магистрали $\mathcal{Q}_{it}^i=(\mathcal{B}_{it}^i,\mathcal{B}_{i,t-1}^i)$ и $\mathcal{Q}_{it}^2=(\mathcal{L}_{i,t-1}^2,\mathcal{L}_{it}^2)$, где $\mathcal{L}_{i0}^1=\mathcal{L}_{i0}^2=\mathcal{L}_i$, $\mathcal{L}_{i1}^1=\mathcal{L}_i^1$, $\mathcal{L}_{i1}^2=\mathcal{L}_i^2$, $\mathcal{L}_{i2}^2=\mathcal{L}_i^2$, $\mathcal{L}_{i2}^2=\mathcal{L}_i^2=\mathcal{L}_i^2$, $\mathcal{L}_{i2}^2=\mathcal{L}_i^2=\mathcal{L}_i^2=\mathcal{L}_i^2$, $\mathcal{L}_{i2}^2=\mathcal{L}_i^$

IУ. Для любых $i=\overline{C,m}$, $t=\overline{1,T}$ и любой точки $\mathscr{L}\in (\mathscr{L}_{it}^1,\mathscr{L}_i)$ должно выполняться ограничение на пропускную способность ребра $(\mathcal{L}_{\kappa-1},\mathcal{L}_{\kappa})$, если $\mathcal{L}\in(\mathcal{L}_{\kappa-1},\mathcal{L}_{\kappa}]$:

$$\min(X(\mathcal{Z}_{i,t-1}^1), X(\mathcal{Z}))$$

$$\int \rho(x) dx \leq \overline{C}_t^{\kappa}.$$

$$X(\mathcal{Z}_{i,t}^1)$$

Аналогично для любой точки $\mathscr{L} \in [\mathscr{L}_{i}, \mathscr{L}_{it}^{2})$, если $\mathscr{L} \in [\mathscr{L}_{\kappa-1}, \mathscr{L}_{\kappa})$, то

$$\begin{array}{c} \mathbf{X}(\mathbf{Z}_{it}^2) \\ \int \rho(\mathbf{x}) d\mathbf{x} \leqslant \bar{C}_t^{\kappa}. \\ max(\mathbf{X}(\mathbf{Z}_{i,t-1}^2), \mathbf{X}(\mathbf{Z})) \end{array}$$

Наконец, если ребро $(\mathcal{U}^*,\,\mathcal{S}_{i})$ на шаге t имело категорию $\mathcal{R}(i,t)$. TO

$$\begin{array}{ll}
\chi(\mathcal{L}_{i,t-1}^{1}) & \chi(\mathcal{L}_{it}^{2}) \\
\int \rho(x) dx + \int \rho(x) dx \leq c_{\pi(i,t)}^{i}, \\
\chi(\mathcal{L}_{it}^{1}) & \chi(\mathcal{L}_{i,t-1}^{2})
\end{array}$$

у. Для каждого ребра $(\mathcal{E}_{K-1}^{},\mathcal{E}_{K}^{}),\,K=\overline{1,m}$, указан директивный срок $\mathcal{F}_{K}^{}\in\left\{ 1,2\,,\ldots\,,\,\mathcal{F}_{K}^{}\right\}$ такой, что если $K\leqslant i$ & $\chi(\mathcal{E}_{i}^{})<\chi(\mathcal{E}_{K}^{}),$

то необходимо

$$\chi(\mathcal{Z}_{i,T_{\kappa}}^{1}) \leq \max(\chi(\mathcal{Z}_{i}^{1}), \chi(\mathcal{Z}_{\kappa-1})),$$

 $K \geqslant i$ & $\chi(\mathcal{B}_i^2) > \chi(\mathcal{B}_K)$, то должно выполняться $\chi(\mathcal{B}_{i,T_k}^2) \geqslant min(\chi(\mathcal{B}_i^2), \chi(\mathcal{B}_{K+1}))$.

 $\chi(\mathcal{S}_{i,T_{k}}^{2}) > min(\chi(\mathcal{S}_{i}^{2}),\chi(\mathcal{S}_{k+1}))$. Изменение категорий ребер $(\mathcal{U}_{i}^{*},\mathcal{S}_{i}^{2})$ должно удовлетворять следующему ограничению:

УІ. Если на шаге t ребро $(\mathcal{U},\mathcal{L}_{i})$ имело категорию j ,то на шаге (t+1) оно может иметь категорию j либо (j+1) . На шаге І каждое ребро имеет І-ю категорию.

Решение задачи состоит в выборе допустимого разбиения матемстрали $P = \left\{ \mathcal{Z}_{it}^{\mathcal{I}} / i = \overline{o,m}; t = \overline{o,T}; \mathcal{Z} \in \left\{1,2\right\} \right\}$ и допустимого набора категорий ребер $(\mathcal{U}^*,\mathcal{Z}_i): \Pi = \left\{\pi(i,t) / i = \overline{o,m}; t = \overline{1,T}\right\}$, минимизирующих целевой функционал:

$$\begin{split} f(P,\Pi) &= \sum_{i=0}^{\infty} \sum_{t=2}^{7} \alpha^{t-2} (S_{x(i,t)}^{i} - S_{x(i,t-1)}^{i}) + \\ &+ \sum_{i=0}^{\infty} \sum_{t=1}^{7} \alpha^{t-1} (\int_{P(x)} \int_{\overline{J}_{i}}^{2} (Y) dy dx + \int_{P(x)} \int_{\overline{J}_{i}}^{2} (y) dy dx + \int_{X(\mathcal{S}_{i,t-1}^{i})} X(\mathcal{S}_{i}^{i}) \\ &+ (\mathcal{J}_{x(i,t)}^{i} + \mathcal{J}_{x}^{*}(X(\mathcal{S}_{i}^{i}) - X(\mathcal{S}_{i,t}^{i}))) \int_{P(x)}^{X(\mathcal{S}_{i,t-1}^{i})} X(\mathcal{S}_{i,t-1}^{i}) \\ &+ (\mathcal{J}_{x(i,t)}^{i} + \mathcal{J}_{x}^{*}(X(\mathcal{S}_{i}^{i}) - X(\mathcal{S}_{i,t}^{i}))) \int_{X(\mathcal{S}_{i,t-1}^{i})}^{X(\mathcal{S}_{i,t-1}^{i})} P(x) dx \\ &+ (\mathcal{J}_{x(i,t)}^{i} + \mathcal{J}_{x}^{*}(X(\mathcal{S}_{i,t}^{i}) - X(\mathcal{S}_{i,t}^{i}))) \int_{X(\mathcal{S}_{i,t-1}^{i})}^{X(\mathcal{S}_{i,t-1}^{i})} P(x) dx \\ &+ (\mathcal{J}_{x(i,t)}^{i} + \mathcal{J}_{x}^{*}(X(\mathcal{S}_{i,t}^{i}) - X(\mathcal{S}_{i,t}^{i}))) \int_{X(\mathcal{S}_{i,t-1}^{i})}^{X(\mathcal{S}_{i,t-1}^{i})} P(x) dx \\ &+ (\mathcal{J}_{x(i,t)}^{i} + \mathcal{J}_{x}^{*}(X(\mathcal{S}_{i,t-1}^{i}) - X(\mathcal{S}_{i,t-1}^{i}))) \int_{X(\mathcal{S}_{i,t-1}^{i})}^{X(\mathcal{S}_{i,t-1}^{i})} P(x) dx \\ &+ (\mathcal{J}_{x(i,t)}^{i} + \mathcal{J}_{x}^{*}(X(\mathcal{S}_{i,t-1}^{i}) - X(\mathcal{S}_{i,t-1}^{i}))) \int_{X(\mathcal{S}_{i,t-1}^{i})}^{X(\mathcal{S}_{i,t-1}^{i})} P(x) dx \\ &+ (\mathcal{J}_{x(i,t)}^{i} + \mathcal{J}_{x}^{*}(X(\mathcal{S}_{i,t-1}^{i}) - X(\mathcal{S}_{i,t-1}^{i})) \int_{X(\mathcal{S}_{i,t-1}^{i})}^{X(\mathcal{S}_{i,t-1}^{i})} P(x) dx \\ &+ (\mathcal{J}_{x(i,t)}^{i} + \mathcal{J}_{x}^{*}(X(\mathcal{S}_{i,t-1}^{i}) - X(\mathcal{S}_{i,t-1}^{i})) \int_{X(\mathcal{S}_{i,t-1}^{i})}^{X(\mathcal{S}_{i,t-1}^{i})} P(x) dx \\ &+ (\mathcal{J}_{x(i,t)}^{i} + \mathcal{J}_{x(i,t)}^{*}) - \mathcal{J}_{x(i,t)}^{i} + \mathcal{J}_{x(i,t)}^{i}) \int_{X(\mathcal{S}_{i,t-1}^{i})}^{X(\mathcal{S}_{i,t-1}^{i})} P(x) dx \\ &+ (\mathcal{J}_{x(i,t)}^{i} + \mathcal{J}_{x(i,t)}^{*}) - \mathcal{J}_{x(i,t)}^{i}) \int_{X(\mathcal{S}_{i,t-1}^{i})}^{X(\mathcal{S}_{i,t-1}^{i})} P(x) dx \\ &+ (\mathcal{J}_{x(i,t)}^{i} + \mathcal{J}_{x(i,t)}^{i}) - \mathcal{J}_{x(i,t)}^{i}) - \mathcal{J}_{x(i,t)}^{i}) \int_{X(\mathcal{S}_{i,t-1}^{i})}^{X(\mathcal{S}_{i,t-1}^{i})} P(x) dx \\ &+ (\mathcal{J}_{x(i,t)}^{i} + \mathcal{J}_{x(i,t)}^{i}) - \mathcal{J}_{x(i,t)}^{i}) - \mathcal{J}_{x(i,t)}^{i}) - \mathcal{J}_{x(i,t)}^{i}) \\ &+ (\mathcal{J}_{x(i,t)}^{i} + \mathcal{J}_{x(i,t)}^{i}) - \mathcal{J}_{x(i,t)}^{i}) - \mathcal{J}_{x(i,t)}^{i}) - \mathcal{J}_{x(i,t)}^{i}) \\ &+ (\mathcal{J}_{x(i,t)}^{i} + \mathcal{J}_{x(i,t)}^{i}) - \mathcal{J}_{x(i,t)}^{i}) - \mathcal{J}_{x(i,t)}^{i}) - \mathcal{J}_{x(i,t)}^{i}) \\ &+ (\mathcal{J}_$$

 α - константа (коэффициент дисконтирования , $\alpha < 1$), $oldsymbol{eta}^{r}$ - ковстанта (коэффициент удельных капитальных затрат на подвижной состав) .

Ввиду того, что задача I, изложенная выше, представляет определенные трудности для решения, сделаем дополнительные упрощающие предположения.

УП. Для любого

$$\int \rho(x)dx = hl_i,$$

$$X(\mathcal{S}_{i-1})$$

h - константа, а ℓ_i - целое неотрицательное число. УШ. На магистрали $\mathcal O$ введем $\mathcal E$ -сеть $Z_h = \{\xi_i\}_{i=0,N}$, такую TO:

a)
$$\chi(\xi_i) < \chi(\xi_j)$$
 npm $i < j$;

6)
$$\{\mathcal{L}_i\}_{i=\overline{0,m}} \subset \mathcal{I}_h$$
;

в) для любого $i=\overline{l}.\overline{N}$

$$\begin{array}{c} \chi(\xi_i) \\ \int \rho(x) dx = \begin{cases} 0, & \text{если для некоторого } K & \text{верно} \\ \xi_{i-1} = \mathcal{L}_{K-1} \& \, \xi_i = \mathcal{L}_K \& \, \ell_K = 0 \;; \\ h - \mathbf{B} & \text{противном случае.} \end{array}$$
 Тогда для любых $i = 0, m$, $i = 1, T$, $2 \in \{1, 2\}$ выполняется $\mathcal{L}_{i,1}^2 \in \mathcal{L}_{h}$, что эквивалентно условию $P \subset \mathcal{L}_{h}$

что эквивалентно условию

Дополнительные предположения УП,УШ позволяют делать множество допустимых разбиений ho конечным и, таким образом, решать поставленную задачу /2/ методами дискретной математики.

§ 2. Алгориты решения задачи 2

Введя новые функционалы $f_{i,t}$, запишем функционал f в виде

$$f(\rho,\Pi) = \sum_{i=0}^{m} \sum_{t=1}^{T} f_{it}(\rho,\Pi)$$
/2/

(содержание функционалов ψ_{it} нетрудно установить из формулы /I/). Кроме того, будем обозначать

$$\begin{aligned}
P_{it} &= \left\{ \mathcal{S}_{is}^{2} \mid s = \overline{o, t} ; \quad x \in \left\{ 1, 2 \right\} \right\}, \\
\Pi_{it} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left\{ \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left. \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left. \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left. \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left. \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left. \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left. \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left. \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left. \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left. \left. x(i, s) \mid s = \overline{i, t} \right. \right\}, \\
P_{it}^{t} &= \left. \left. x(i, s) \mid s = \overline{i, t}$$

Поскольку при любых i, $\mathfrak d$ функционал $f_{i\mathfrak d}$ зависит только от па-

раметров подрасписаний P_{ij} , Π_{ij} , то $f_i^t(P_{it}, \Pi_{it}) = f_i^{t-1}(P_{i,t-1}, \Pi_{i,t-1}) + f_{it}(P_{it}, \Pi_{it}).$

Кроме того, из /2/ и /3/ следует

$$f(P,\Pi) = \sum_{i=0}^{m} f_i^T(P_{iT}, \Pi_{iT}).$$
 /5/

Подрасписание (P_{it}, P_{it}) расписания (P, P) при фиксированных значениях параметров

$$\mathcal{S}_{it}^{1} = \xi_{t}, \quad \mathcal{S}_{it}^{2} = \xi_{t}, \quad \mathcal{R}(i, t) = \kappa$$
 (6/

будем обозначать $(P_{it}^{\ell t}, \Pi_{it}^{k})$

Нетрудно видеть, что при фиксации параметров /6/ переменные подрасписания (P_{it}, η_{it}) не связаны ни одним из ограничений I-УШ с остальными переменными расписания (P, Π) (это свойство независимости будем обозначать (*). Таким образом, используя соотношения /4/, /5/, мы можем получить следующие рекуррентные соотношения для вычисления оптимального значения функционала (признак оптимальности расписания будет фиксироваться волной сверку) :

$$f(\widetilde{P},\widetilde{\Pi}) = \min_{\substack{i=0 \ i \in \mathcal{D}}} \sum_{i=0}^{n} f_i^T(\widetilde{P}_{iT}^{\ell_i z_i}, \widetilde{\Pi}_{iT}^{\kappa_i}), \qquad (7)$$

где $Y = \{y_i / i = \overline{0,m}, y = \{\ell,\tau,\kappa\}\}$, а принадлежность множеству $\mathcal D$ означает выполнение ограничений I,П,УI при условии

$$\mathcal{B}_{iT}^{1} = \xi_{l_{i}}, \quad \mathcal{B}_{iT}^{2} = \xi_{n_{i}}, \quad \mathcal{R}(i,T) = \kappa_{i} \quad (i = \overline{0,m});$$

$$\int_{i}^{t} (\widetilde{\rho}l^{t}, \widetilde{\Pi}_{it}^{\kappa}) = \min \quad (\int_{i}^{t+1} (\widetilde{\rho}_{i,t-1}^{xq}, \widetilde{\Pi}_{i,t-1}^{s}) + \int_{i} (\rho_{i,t}^{exxq}, \Pi_{i,t}^{\kappa s})),$$

$$x \in \{l, l+1, \dots, v(i)\}$$

$$q \in \{v(i), v(i)+1, \dots, v\}$$

$$\delta \in \{\kappa, \max(1, \kappa-1)\}$$

$$i=\overline{0,m}$$
; $t=\overline{2,T}$; $l=\overline{0,V(i)}$; $\tau=\overline{V(i),N}$; $\kappa=\overline{1,\min(t,\beta_i)}$,/8/

где V(i) — целочисленная функция, определяемая соотношением $\xi_{V(i)} = \mathcal{L}_i$, а $(P_{it}^{\ell \tau xQ}, \Pi_{it}^{\kappa t})$ — подрасписание $(P_{it}^{\ell \tau}, \Pi_{it}^{\kappa})$ при фиксированних значениях параметров: $\mathcal{L}_{i,t-1}^{t} = \xi_{x}, \mathcal{L}_{i,t-1}^{t} = \xi_{q}, \quad \pi(i,t-1) = \delta.$

$$\chi_{i,t-1}^{1} = \xi_{x}, \quad \chi_{i,t-1}^{2} = \xi_{q}, \quad \pi(i,t-1) = \delta.$$

При некоторых комбинациях параметров $(i, t, \ell, \tau, \kappa, \varkappa, q, \delta)$ в формуле /8/ могут появиться недопустимые подрасписания.В этом случае значения соответствующих функционалов от недопустимых подрасписаний полагаем равными бесконечности.

Покажем, что, используя свойство независимости (*),можно также избежать полного перебора множества ${\mathfrak D}$ при вычислении

минимума в правой части соотношения /7/. В самом деле, для любсминимума в правом части соотношения ///. В самом деле, для люсого f в предположении $\mathcal{O}_{i} \neq \emptyset$ и при фиксированном значении параметра \mathcal{I}_{i} переменные $\mathcal{Y}_{i} \in \mathcal{V}_{i}(\mathcal{I}_{j}) \doteq \left\{ \mathcal{Y}_{i} \in \mathcal{Y} \middle | \mathcal{V}(i) < \mathcal{I}_{j} \right\}$ не связаны ограничениями с переменными $\mathcal{Y}_{i} \in \mathcal{Y}_{i}(\mathcal{I}_{j}) \doteq \left\{ \mathcal{Y}_{i} \in \mathcal{Y} \middle | \mathcal{V}(i) > \mathcal{I}_{j} \right\}$, а зункционал $\sum_{i=0}^{N} \int_{i}^{N} \left(\bigcap_{i=1}^{N} \mathcal{I}_{i} \bigcap_{i=1}^{N} \mathcal{I}_{i} \right)$ также разделяется на слагаемые $\int_{i}^{N} \left(\bigcap_{i=1}^{N} \mathcal{I}_{i} \bigcap_{i=1}^{N} \mathcal{I}_{i} \right)$ и зависящие лишь от параметров множеств $\mathcal{V}_{i}(\mathcal{I}_{j})$ и $Y_2(au_j)$ соответственно. Это позволяет искать оптимум функционала f^{γ_j} по всем допустимым наборам множества $Y_{j}(\gamma_j)$ независимо от выбора значений остальных параметров множества Y (сформулированное свойство обозначим (* *)

Следует лишь уточнить, что в случае выполнения для некоторого i равенства $T_i = V(i)$ необходимо дополнительно указать принадлежность параметров Y_i одному из множеств $Y_1(T_i)$, $Y_2(T_i)$ На основании свойства (* *) и рекуррентних соотношений

/7/, /8/ построим работу алгоритма, эффективно находящего оптимальное расписание (\hat{P},\hat{P}) задачи 2.

Алгориты

Этап I. Организуем цикл по $\dot{\iota}$ от o до m , а внутри негоцикл по t от I до \mathcal{T} , где для всевозможных значений параметров $\ell = \overline{\rho}, V(i)$, $\tau = \overline{V(i)}, N$, $\kappa = \overline{l}, min(t, \beta_i)$ вычислим значения функционала $f_i^t(\widetilde{\rho}_{it}^{\ell r}, \widetilde{\mathcal{T}}_{it}^{\kappa})$ по формуле /8/.

При этом пользуемся множеством значений

$$F_{i}^{t-1} = \left\{ \begin{array}{ll} \rho t - 1 \\ i \end{array} \right. \left(\begin{array}{ll} \widetilde{\rho} \ell v \\ i, t - 1 \end{array} \right) / \ell = \overline{\rho, \nu(i)}, \quad \gamma = \overline{\nu(i), N}, \quad K = \overline{l, \min(\ell - l, \beta)} \right\};$$

подсчитанных на предыдущем шаге цикла по t . По окончании шага t множество f_i^{t-1} из памяти убираем. По вычислении множества f_i^T вычисляем величины

$$g_i(l, \tau) = \min_{\kappa} f_i^{\tau}(\tilde{P}_{iT}^{l\tau}, \tilde{\Pi}_{iT}^{\kappa})$$

и запоминаем значение $K=K_{l}\left(\ell,\mathcal{T}\right)$, на котором минимум достигается. Далее для всех значений $\ell=\mathcal{O},\mathcal{N}$ и $\mathcal{T}=\ell,\mathcal{N}$ вычисляем $\varphi^{j}(\ell,\tau), \quad j=\overline{1,4}$, по формулам

$$\varphi^{1}(\ell,\tau) = \min_{\ell < \nu(i) < \tau} g_{i}(\ell,\tau), \quad \varphi^{3}(\ell,\tau) = \min_{\ell < \nu(i) < \tau} g_{i}(\ell,\tau),$$

$$\varphi^{2}(\ell, \tau) = \min_{\ell < \nu(i) \leq \tau} g_{i}(\ell, \tau), \quad \varphi^{4}(\ell, \tau) = \min_{\ell < \nu(i) \leq \tau} g_{i}(\ell, \tau),$$

и запоминаем значения $i=i^{\ell}(\ell,\ell)$, $j=\overline{1,4}$, на которых достигаются перечисленные минимумы, а также запоминаем соответствующие им значения оптимальных категорий $K_i(\ell,\tau)$ (которые обозначим $K^j(\ell,\tau)$). На каждом шаге цикла по i происходит пересчет текущих значений функций $\varphi^j(\ell,\tau)$, $i^j(\ell,\tau)$ и $K^j(\ell,\tau)$, после чего всю память шага i стираем.

Таким образом, память этапа I составляет $\mathcal{O}(|F_i^t|) + \mathcal{O}(N^2) \leqslant \mathcal{O}(N^2 T)$

(поскольку $\beta_i \leqslant T$ для любого $i = \overline{O, m}$). Трудоемкость этапа I составляет

$$O(AT\sum_{i=0}^{m} \beta_{i} v^{2}(i)(N-v(i))^{2}) = O(AT^{2}N^{4}m),$$

где A - величина, ограничивающая сверху трудоемкость вычисления каждого из значений какого-либо функционала $\int_{it}^{\ell} (P_{it}^{\ell r s q}, \prod_{it}^{\kappa \delta})$ по формулам /I/, /2/.

 $\frac{3 an 2.}{(0)}$ Вычисляем величины $\psi^{j}(t)$, $\tau = 0, N$, j = 1, 2, из соотношений $\psi^{j}(0) = 0$; при $t \geqslant 1$ имеем

$$\psi^{1}(\tau) = \min_{\ell=0, \, 2-1} \min \left\{ \psi^{1}(\ell) + \varphi^{2}(\ell, \tau), \ \psi^{2}(\ell) + \varphi^{1}(\ell, \tau) \right\},$$

$$\psi^{2}(\tau) = \min_{\ell=0,\overline{\tau-1}} \min \left\{ \psi^{1}(\ell) + \varphi^{4}(\ell,\tau), \ \psi^{2}(\ell) + \varphi^{5}(\ell,\tau) \right\}$$

и запоминаем значения $\ell = \ell(j,t)$ и верхнего индекса $\lambda(j,t)$, такие что

 $\psi^{j}(\tau) = \psi^{1+2j-\lambda(j,\tau)}(\ell(j,\tau)) + \varphi^{\lambda(j,\tau)}(\ell(j,\tau),\tau),$

а также запоминаем значения номера $i=i^{\lambda(j,\tau)}(\ell(j,\tau),\tau)$ ребра $(\mathcal{U}^*,\mathcal{L}_i)$ и его оптимальную категорию $\kappa^{\lambda(j,\tau)}(\ell(j,\tau),\tau)$.

Трудоемкость этапа 2 составляет $O(N^2)$, память O(N) . Этап 3 (обратный ход). Полагаем $2_o = N$, $j_o = 2$;

для
$$s = 1, 2$$
, ... полагаем

 $t_s = \ell(j_{s-1}, \tau_{s-1}),$
 $i_s = i^{\lambda(j_{s-1}, \tau_{s-1})}(\tau_s, \tau_{s-1}),$
 $\kappa_s = \kappa^{\lambda(j_{s-1}, \tau_{s-1})}(\tau_s, \tau_{s-1}),$
 $j_s = 1 + 2j_{s-1} - \lambda(j_{s-1}, \tau_{s-1})$

 $j_3 = 1 + 2j_{3-1} - \lambda(j_{3-1}, \tau_{3-1})$ до тех пор, пока на некотором шаге 3^* не возникнет равенство $\tau_{3^*} = 1$. Конечность процесса гарантируется соотношением $\tau_{3+1} \leqslant \tau_3 - 1$.

Трудоемкость этапа 3 есть O(N), память также O(N) (при незначительном уточнении алгоритма можно добиться оценки 1 < m + 1 а следовательно, оценок O(m) на трудоемкость и память этапа 3).

Этап 4. Для каждого $3 = \sqrt{3}$ вичисляем множества

 $\vec{F_{i_3}} = \{ \vec{t} \in \widetilde{\mathcal{P}_{i_3}}^{\ell t}, \widetilde{\mathcal{P}_{i_3}}^{\kappa} \} / \ell = \vec{t_3}, \forall (i_3), \tau = \overline{\mathcal{V}(i_3)}, t_{3-1}, \kappa = \overline{i_3 \min(t,\kappa_3)} \}, t = \overline{i_1}, \tau$ и затем обратным ходом по t от Γ до I полностью восстанавливаем оптимальное расписание, полагая

$$\widetilde{\mathcal{S}}_{i_3T}^1 = \xi_{r_3}, \quad \widetilde{\mathcal{S}}_{i_3T}^2 = \xi_{r_{3-1}}, \quad \widetilde{\pi}(i_3, T) = \kappa_3,$$

а для $t=1,\overline{T-1}$ получая параметры $\widetilde{\mathcal{L}}_{i_3t}$, $\widetilde{\mathcal{R}}(i_3,t)$ из рекуррентных соотношений:

$$\widetilde{\mathcal{L}}_{ijt}^{l} = \xi_{x^*}, \ \widetilde{\mathcal{L}}_{ijt}^{2} = \xi_{q^*}, \ \widetilde{\mathcal{R}}(i_3,t) = \delta^*, \ \text{fre} \quad x^*, q^*, \delta^* \quad \text{ такие}$$
 что при $\xi_{\ell} = \widetilde{\mathcal{L}}_{i_3,t+1}^{l}, \ \xi_{\tau} = \widetilde{\mathcal{L}}_{i_3,t+1}^{l}, \ K = \widetilde{\mathcal{R}}(i_3,t+1) \ \text{в формуле} \ /8/$ имеем

 $f_{i_3}^{t+1}(\widetilde{P}_{i_3,t+1}^{\ell r},\widetilde{\Pi}_{i_3,t+1}^{\kappa}) = f_{i_3}^{t}(\widetilde{P}_{i_3t}^{**q},\widetilde{\Pi}_{i_3t}^{\delta^*}) + f_{i_3t}(\widehat{P}_{i_3t}^{\ell rose}q^*,\Pi_{i_3t}^{\kappa\delta^*}).$

Для номеров ребер $i \in \{0,1,\ldots,m\}$, не совпадающих с i_3 ни при каком 3 , подагаем

Этап 4 завершает работу всего алгоритма. Трудоемкость этапа 4 составляет

$$O(AT^{2}\sum_{A=1}^{5^{*}}(\gamma_{A}-\nu(i_{3}))^{2}(\gamma_{A-1}-\nu(i_{3}))^{2})=O(AT^{2}N^{4}).$$

Память этапа 4 есть $\mathcal{O}(T^2 N^2)$

Таким образом, трудоемкость всего алгоритма есть $O(AT^2N^4m)$, максимальная необходимая память $O(T^2N^2)$.

В заключение отметим, что поставленная в статье задача отражает лишь наиболее принципиальные стороны ее математико-эко-номической постановки (см. [2]). Однако экономическая модель процесса обслуживания может быть еще более расширена за счет введения

- дополнительных количественных ограничений на поток при большей качественной его свободе;
- 2) потока дополнительного продукта со своими технологическими особенностями и увязанного по технологии с повоком первого продукта;
- 3) ненулевых объемов потоков обоих продуктов, уже распределенных каким-то образом по магистрали к начальному моменту времени.

Алгориты, представленный в настоящей работе, является основой эвристического алгориты, решающего такую расширенную задачу на примере оптимизации обслуживания строительства Байкало-Амурской железнодорожной магистрали. Последний запрограммирован в системе "Альфа-6" и работает на реальных данных.

Поступила в ред.-изд.отдел 13 июля 1977 г.

Литература

- І. Перепелица В.А.,.Севастьянов С.В. Об одной задаче теории расписаний на сети. В кн:: Управляемые системы.Вып.15. Новосибирск, 1976, с. 48-67.
- 2. Алексеев А.М., Журавель М.А., Перепелица В.А. Оптимизация транспортного обслуживания строительства БАМ. В км.: Экономика и математические методи, № 1, вып.13, 1977, М., "Наука".