ОВ ОДНОМ КЛАССЕ УПРАВЛЯЕМЫХ ПРОЦЕССОВ В ХИМИЧЕСКОЙ ТЕХНОЛОГИИ В.И.Быков, В.В.Леонов, А.В.Федотов, М.Г.Слинько

Одной из основних ведач расчета промышленных каталитических реакторов является определение оптимальных условий их работы. При этсм
важен учет конкретных особенностей управляемого процесса, протекарщего в реакторе. Так, в работе [I] было показано, что оптимальный температурный режим обратимых экзотермических процессов зависит только
от локальных условий и не зависит от длины реактора. Позднее такие
режимы стали называть несвязными [2], и вопрос о существовании их
возник в связи с задачами оптимизации сложных процессов.

Несвязность означает, что оптимум в целом слагается из оптимумов в каждый момент времени, то есть достижение наилучших результатов в какой-либо момент времени соответствует достижению наилучших
результатов за весь рассматриваемый период. Ввиду простоты определения оптимальных условий для несвязного процесса представляет интерес выделить класс таких процессов, то есть найти необходимые и
достаточные условия их существования.

Пусть управляемый процесс описывается системой п обыкновенных дифференциальных уравнений первого порядка:

 $\frac{dx_{\ell}}{dt} = f_{\ell}(X_{\ell},...,X_{n},\mathcal{U},t), \quad (\ell=\ell,...,n), \qquad /1/$ где \mathcal{U} является управляющим параметром процесса, $\overline{X}=(X_{\ell},...,X_{n})$ — вектор состояния, функции $f_{\ell}(\overline{X},\mathcal{U},t)$ удовлетворяют условиям существования и единственности решения. Кроме того, считаем, что управление удовя летворяет следующему условию:

 $\mathcal{U} \in \{\mathcal{U}: \ 0 \leqslant \mathcal{U} \leqslant b \leqslant +\infty\} = \mathcal{U}.$ Допустимыми на интервале $[0,t_k]$ будем считать такие управления $\mathcal{U}_{(a,t_k)}$ которые являются кусочно-непрерывными на $[0,t_k]$ и удовлетворяют при $t \in [0,t_k]$ условию /2/. Класс допустимых управлений обозначим через $K(\mathcal{U})$.

Рассмотрим следующую задачу: при заданном начальном состоянии $X_l(0) = X_l^0$ (l = 1, ..., n) управляемой системы /I/ требуется выбрать такое допустимое управление \mathcal{U}_{l, t_k}^* , для которого достигает максимума иритерий оптимизации:

 $Q(x_i) = \max_{u_{[0, t_k]}} \int_{0}^{t_k} x_i(\bar{x}_i^0, t, u_{[0, t_k]}) dt,$ /3/

где X, — координата вектора $\overline{X}(\overline{X}^0,t,\mathcal{U}_{[Q,t_k]})$, являющегося решением системи /I/ с начальным условием $\overline{X}(O)=\overline{X}^0$ и управлением $\mathcal{U}_{\{Q,t_k\}}\in K(U)$. Очевидно, что оптимальное управление на $[Q,t_k]$ для системи /I/ является функцией начального условия и длительности процесса $[0,t_k]$:

$$u_{(0,t_k)} = u_{(0,t_k)}(\bar{x}^o,t).$$

Выделим управляемые процессы, обладающие следующим свойством: если $u_{[a,t_*]}(\vec{X}^o,t)$, $u_{[a,t^*]}(\vec{X}^o,t^*)$ - оптимальные управления соответственно на отрезках [0, t_k], [0, t^*], $0 < t^* < t_k$, то для всякого $t^* \in [0, t_k]$

$$U_{[0,t_*]}(\bar{X}^{\circ},t) \equiv U_{[0,t^*]}(\bar{X}^{\circ},t). \qquad /\infty/$$

В общем случае система / і/ ос -свойством (несвязностью) не обладает, и для отыскания оптимального управления локальные алгоритмы неприменимы [37 .

Обозначим

$$S(t) = \{x_i(\overline{x}^o, t, u_{[o,t_k]}) : u_{[o,t_k]} \in K(U)\};$$

$$S^*(t) = \{\varphi(t, u) : a \leq u_{[a,t_k]} \leq b : u_{[o,t_k]} \equiv const\}; \qquad /4/$$

$$\varphi(t, u) = x_i(\overline{x}^o, t, u_{[o,t_k]}) : u_{[a,t_k]} \equiv u \equiv const.$$

ТЕОРЕМА І. Если управляемая система имеет вид

$$\frac{dx_{i}}{dt} = \sum_{j=1}^{n} a_{ij}(t, u)x_{j} + b_{j}(t), (i = 1, ..., n)$$
/5/

при начальных услогиях

$$x_i(0) = x_i^0$$
, $(i = 1, ..., n)$ /6/

 $x_i(0) = x_i^o$, (i = 1, ..., n) /6 и $a_{ij}(t, u)$ – монотонные функции по $u \in [a, b]$, то $S^*(t) \equiv S(t)$, $t \in [0, t_k]$. ДОКАЗАТЕЛЬСТВО

Для доказательства теоремы достаточно проверить, что для любого управления $u_{l0,t_kl} \in K(U)$, $t^* \in [0,t_k]$ существует постоянное допусти- $\hat{\mathcal{Q}}_{[0,t^*]}$, to ecth $\hat{\mathcal{Q}}_{[0,t^*]}(\overline{X}^o,t)$ \equiv conste[a,b], при котомое управление ром справедливо тождество: $X_i(\bar{X}^o, t^*, \hat{\mathcal{U}}_{l0,t^*j} = X_i(\bar{X}^o, t^*, \mathcal{U}_{l0,t_k})$.

Докажем, что всякому допустимому управлению $u_{(o,t_k)}(x,t), t \in [0,t_k]$ соответствует такое значение параметра $u \in [a,b]$, что для решения системы

$$\frac{dz_{i}}{dt} = \sum_{j=1}^{n} a_{ij}(t, u)z_{j} + \sum_{j=1}^{n} [a_{ij}(t, u) - a_{ij}(t, u(t))]x_{j}^{*},$$
 /7/

где $Z_i = X_i (\vec{X}_i^0, t^*, \hat{u}_{[0,t^*]}) - X_i (\vec{X}_i^0, t^*, u_{[0,t_n]}), (i=/,...,n),$ при начальных условиях

$$Z_{\ell}(0) = 0$$
, $(i=/,...,n)$, справедливо равенство $Z_{\ell}(t_{\kappa}) = 0$.

Hyerb $\mathcal{G}_{l,l}(t)$, $\mathcal{G}_{l,2}(t)$, ..., $\mathcal{G}_{l,n}(t)$ $(i=l,\ldots,n)$ ная система решений однородной системы, соответствующей /7/, и пусть Δ_i означает определитель, которой получается из определителя

$$\Delta = \begin{vmatrix} \varphi_{l,1} & \dots & \varphi_{l,n} \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_{n,l} & \dots & \varphi_{n,n} \end{vmatrix}$$

заменой / -ой строки функция

$$g_{i}(t, u) = \sum_{j=1}^{n} [\alpha_{ij}(t, u) - \alpha_{ij}(t, u(t))] x_{j}^{*}(t), (i=1,...,n).$$

Тогда, согласно [4].

$$Z_{i}(t_{k}) = \sum_{k=1}^{n} \varphi_{i,i}(t_{k}) \int_{1}^{t_{k}} \frac{\Delta i}{\Delta} dt.$$

Фундаментальную систему решений можно выбрать так, что $\varphi_{l,l}(t_k)=l, \quad \varphi_{l,l}(t_k)=0, \quad (l=2,3,\ldots,n).$

В этом случае

$$Z_{i}(t_{K}) = \int_{a}^{t_{K}} \frac{\Delta i}{\Delta} dt.$$

Применяя теорему о среднем, имеем:

$$z_i(t_k) = \frac{1}{\Delta(\xi)} \int_{0}^{t_k} \Delta_i dt$$

Здесь $\xi \in [0, t_k]$. Ясно, что $Z_I(t_k) = F(u)$. Функция F(u) непрерывна по u и на концах отрезка [a,b] имеет разные знаки. Действительно,

$$\Delta_{l}(t,a) = \begin{vmatrix} g_{l}(t,a) & g_{l}(t,a) & \dots & g_{n}(t,a) \\ \varphi_{2,l}(t) & \varphi_{2,2}(t) & \dots & \varphi_{2,n}(t) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_{n,l}(t) & \varphi_{n,2}(t) & \dots & \varphi_{n,n}(t) \end{vmatrix}$$

И

$$\Delta_{i}(t,b) = \begin{vmatrix} g_{i}(t,b) & g_{2}(t,b) & \dots & g_{n}(t,b) \\ \varphi_{2,i}(t) & \varphi_{2,2}(t) & \dots & \varphi_{2,n}(t) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \varphi_{n,i}(t) & \varphi_{n,2}(t) & \dots & \varphi_{n,n}(t) \end{vmatrix}$$

имеют разные знаки, так как в силу монотонности по μ функций α_{ij} функции $q_l(t,\mu)$ меняют знак на отрезке [a,b]. Значит, $F(\mu)$ на отрезке [a,b] обращается в нуль, то есть найдется такое значение параметра $\mu \in [a,b]$, что $F(\mu)=0$. Таким образом, $Z_i(t_i)=0$. Кривую

$$G: x_i = f(t) = \sup_{\alpha \in u \in b} \varphi(t, u)$$
 /9/

будем называть верхней огибающей семейства $\{\varphi(t,u)\}$, и эта кривая может частично или полностью совпадать на отрезке $[0,t_k]$ с одной из кривых семейства /4/. Из непрерывной зависимости $\varphi(t,u)$ от u следует, что

$$f(t) = \max_{\alpha \in u \leq b} \varphi(t, u). \qquad (9)$$

Кроме того, из определения $\varphi(t,u)$ и справедливости тождества $S^*(t) = S(t)$ для рассматриваемой системы следует, что

$$f(t) = \max_{x_i \in S(t)} x_i. \qquad /10/$$

Из этого непосредственно вытекает следующая

ТЕОРЕМА 2. Система /2/ обладает ∞ -свойством на промежутке [0, t_k], если существует такое допустимое управление $\hat{\mathcal{U}}_{(0,t_k)} \in \mathcal{K}(U)$,

что

 $X_t(\overline{X}^o, t, \hat{u}_{to,t_k]}) = f(t), \quad t \in [0, t_k].$

/11/

СЛЕДСТВИЕ І. Управление $\hat{\mathcal{Q}}_{\mathcal{L}Q,t_R}(\vec{X},t)$, удовлетворяющее /II/, является оптимальным.

СЛЕДСТВИЕ 2. Если верхние огибающие /9/ семейства /4/ принадлежат этому семейству при $u \in [a,b]$, то система /5/ обладает ∞ -свойством.

СЛЕДСТВИЕ 3. Для того, чтобы управление $u_{(Q,t_{\kappa})} \in K(U)$ удовлетворяло /II/, необходимо выполнение условий:

$$\frac{\partial \varphi(t,\Omega_{\{0,t_k\}})}{\partial u} \begin{cases} >0 & \text{при } u_{\{0,t_k\}}(t) = b, \\ =0 & \text{при } u_{\{0,t_k\}}(t) \in [\alpha,b], \\ \leqslant 0 & \text{при } u_{\{0,t_k\}} = \alpha. \end{cases} /12/.$$

Если к тому же оптимальное на $[0,t_{\kappa}]$ управление единственно, то условие /12/ является также и достаточным в случае системы /5/ для справедливости \propto -свойства.

Рассмотрим еще один класс процессов, которые описываются системой обыкновенных дифференциальных уравнений вида:

 $\frac{\sqrt{X}}{\sqrt{L}} = A(\omega)X$, /13/ с начальными условиями $\overline{X}(0) = \overline{X}^0$, где $\overline{X} = (X_1, ..., X_n)$ – вектор-функция состояния, \mathcal{U} – управление. Система /13/ удовлетворяет условиям теоремы I, и кроме того, справедливо равенство

$$\varphi(t,u) = (e^{\Re(u)t}\bar{\mathbf{x}},\bar{c}_i), \qquad /14/$$
где вектор $\bar{c}_i = (1,0,...,0)$. При малих $t > 0$

 $\varphi(t,u)=x_i^2+(\varphi(u)\overline{x}_i^2\overline{c}_i)t+O(t^2),$

/15/

следовательно, в случае

$$\min_{\alpha \leq u \leq b} (A(u)\overline{X}_{i}^{o}, \overline{C}_{i}) > 0$$
 /16/

имеют место равенства:

$$\begin{cases}
f(t) = (e^{A(b)t} \overline{x}^{o}, \overline{c}_{i}) \\
\hat{u}(t) = b
\end{cases}, t \in [0, t^{+}],$$

где

$$t^+ = \inf_{f(t) > \varphi(t,b)} t > 0.$$

/18/

Аналогично, если

$$\max_{\alpha \leq u \leq b} (A(u)\overline{X}^{\circ}, \overline{C}_{i}) < 0, \qquad /19/$$

то для $t \in [Qt]$ справедливы равенства:

$$\begin{cases}
f(t) = e^{A(\alpha)t} \bar{X}^{\alpha}, \bar{C}, \\
u(t) = \alpha
\end{cases}, t \in [0, t], \tag{20}$$

где

$$t=\inf_{f(t)>\varphi(t,a)}t>0.$$

Все это обобщается следующей теоремой.

ТЕОРЕМА 3. Если для системы /5/ справедливо одно из неравенств

/16/ или /19/, тогда решение системы /13/, при начальных условиях $X(0) = X^0$, обладает с. -свойствии для любого интермала [0, t], где t рювлетворяет одному из нерования:

$$0 < t < t^+$$
 $0 < t < t^-$

Таким образом, теоремы I,2 дают необходимые и достаточные условия несвязности оптимального управления на заданном интервале $[0,t_k]$ для процессов, описывающихся системой обыкновенных дифференциальных уравнений вида /7/.

Теорема 3 устанавливает необходимие условия несеязности оптимального управления для особого случая, который возникает при решении задач, описываемых системами обикновенних уравнений вида /13/. Причем, интервал времени, на котором ищется решение, при наличии ограничений на оптимальное управление, равен $[0,t_k]$, где $t_k=\mathcal{E}$, \mathcal{E} — мало, или удовлетворяет одному из равенств: $\mathcal{E}=t^+$, $\mathcal{E}=t^-$.

Применим получение условия существования несвязности оптимального управления для анализа некоторых задач оптимизации каталитичесских процессов.

Рассмотрим процесс с двумя последовательными реакциями первого

порядка:
$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$
. Знаковая модель процесса
$$\begin{cases} \frac{dx_i}{dt} = \mathcal{U} X_2 - \alpha \mathcal{U}^b X_1 & /21/\\ \frac{dx_2}{dt} = -\mathcal{U} X_2 & \\ C \text{ начальными условиями } X_1(0) - X_{10}, \quad X_2(0) = X_{20}, \quad \text{где } X_1, X_2 - \text{ концентра-} \end{cases}$$

с начальными условиями $X_1(0) - X_{10}$, $X_2(0) = X_{20}$, где X_1, X_2 — концентрации B . A соответственно, \mathcal{U} — управление, удовлетворяющее ограничению $\mathcal{U}_* \leqslant \mathcal{U} \leqslant \mathcal{U}^*$.

Оптимальная задача заключается в том, чтобы выбрать такое управление u(t), удовлетворяющее $u_* < u(t) < u^*$, которое бы обеспечивало достижение максимума $x_i(t_k)$.

Система /2I/ удовлетворяет условиям теоремы I, следовательно, рассматривая u как параметр, получим

$$\chi_{i} = f(t) = \left[\frac{u \times_{20}}{a u^{b} - u} e^{(a u^{b} - u)t} + \chi_{i0} \right] e^{-a u^{b}t}.$$

Однако, для того, чтобы система /2I/ удовлетворяла « -свойству, достаточно выполнения условия теоремы 2, то есть

$$\frac{\partial x_i}{\partial u} \begin{cases} < 0 \text{ при } u = u_*, \\ = 0 \text{ при } u(t) \in [u_*, u^*], \\ \ge 0 \text{ при } u = u^*, \end{cases}$$

где

$$\frac{\partial x_i}{\partial u} = \left[\frac{x_{20}}{(au^b - u)^2} e^{(au^b - u)t} (au^b (1 - b) - ut(au^b - u)) - x_{i0}abu^b \right] e^{-au^b t}$$

при a > 0, b > 1.

Видно, что второе и третье условия не удовлетворяются ни при каком $\mathcal{U} \in [\mathcal{U}_{\mathbf{x}}, \mathcal{U}^{\mathbf{x}}]$, следовательно, оптимальный режим не является неснязным. Аналогичный результат получается для достаточно больших $\mathbf{t}_{\mathbf{x}}$ при рассмотрении процесса с двумя параллельными реакциями:

$$A \subset E$$

Рассмотренные схемы реакций являются частями более общих схем. Следовательно, в общем случае процессы со сложными схемами реакций не могут иметь несвязного оптимального управления, и применение локальных алгоритмов оптимизации в этом случае не является обоснованным.

Поступила в редакцию 10.9.1968г.

Литература

- I. Г.Н.Воресков, М.Г.Слинько, Основы расчета контактных аппаратов для обратимых экзотермических процессов, ЖПХ, 16, 377 /1943/.
- 2. Р.Арис, Оптимальное проектирование химических реакторов, Ин.-Лит., М., 1961.
- Э. В.В.Леонов, О численных методах построения оптимального управления, II Всесованый съсод по теоретической и прикладной механике АН СССР, 1961.
- 4. Э. Камке, Справочник по обыкновенным дисференциальным уравнениям, М., 1965.