УДК 51.330:115

ТЕОРЕМА О МАГИСТРАЛИ В СИЛЬНЕЙШЕЙ ФОРМЕ

водяфаж.к.А

Теорема о магистрали в сильнейшей форме, принадлежащая В.А. макарову, доказана для базисных^{ж)} оптимальных траекторий в моделях Неймана с невырожденным темпом роста (см. [1]). В данной работе эта форма теорем о магистрали доказывается с другой точки зрения, чем в работе [I] и для другого класса оптимальных траекторий. Приведенное здесь доказательство указанной теоремы существенно опирается на теоремы В.Л.Макарова и А.М.Рубинова. связывающие понятия характеристики трасктории и трасктории. растущей средним темпом с. В статье рассматриваются так называемые 🗸 -оптимальные трасктории, для которых в моделях Неймана имеет место теорема о магистрали в сильнейшей форма (теорема I.1), а в моделях Гейла - сходимость оптимальных траекторий к неямановской грани (теорема 2.1). Далее рассматриваются модели Нетмана-Гейла, обладающие единственным равновесным вектором цен. Для таких моделей указыватся такая коническая окрестность луча цен, что люоая оптимальная траектория принадлежит нечмановской грани с того момента, с какого ее жарактеристика окажется в это? окрестности дуча цен (теоремы 1.2 и 2.2). В конце статьи описывается важный класс моделей, в которых имеют место указанные выше теоремы.

ж) $\mathbb Z$ этой работе используется терминология, принятая в $[\mathtt I]$.

 ${\bf I^0}$. Рассмотрим модель Неймана ${\mathcal Z}$, определяемую парой неотрицательных матриц ${\mathcal A}$ и ${\mathcal B}$, имеющих, соответственно, ${\mathcal N}$ строк и ${\mathcal M}$ столбцов. Пусть неймановская грань ${\mathcal N}_{\alpha}$ этой модели, соответствующая темпу роста ${\alpha}$, натянута на ${\mathcal M}_{\gamma}$ образующих, где ${\mathcal M}_{\gamma} \le m$. Считаем, что образующие неймановской грани занумеровани индексами ${\bf I}, {\bf 2}, \ldots, {\mathcal M}_{\gamma}$. Пусть ${\mathcal A}_{\gamma}$ и ${\mathcal B}_{\gamma}$ — матрицы, составленные из первых ${\mathcal M}_{\gamma}$ столбцов соответственно матриц ${\mathcal A}$ и ${\mathcal B}$, а ${\mathcal A}_{2}$ и ${\mathcal B}_{2}$ — матрицы, составленные из последних ${\mathcal M}_{\gamma} = m_{\gamma}$ столбцов соответственно матриц ${\mathcal A}$ и ${\mathcal B}$. В этой работе всюду считаем темп роста ${\alpha} = {\mathcal I}$. Далее, положим

$$Q_{\alpha} = \{ (f,g) \in \mathcal{Z}' \colon fA_2 > gB_2 \},$$

где \mathcal{Z}' — модель, двойственная к модели \mathcal{Z} . Ясно, что все равновесные пары (p,p), где $p \in int \, \Pi_{\alpha}$, $\Pi_{\alpha} = \{p \in (\mathcal{R}_{n}^{R})^{*}, p(x) \gg p(y), (x,y) \in \mathcal{Z}\}$, принадлежат множеству Q_{α} . Действительно, из определения неймановской грани (см. [1]) следует, что для любого равновесного вектора $p \in int \, \Pi_{\alpha}$ имеют место соотношения $p \mathcal{H}_{1} = p \mathcal{B}_{1}$ и $p \mathcal{H}_{2} > p \mathcal{B}_{2}$. Отсюда вытекает справедливость указанного выше утверждения. Введем следующее определение, которое будет играть в дальнейшем существенную роль.

ОПРЕДЕЛЕНИЕ. Оптимальную траекторию $\chi = (x_t)_{t=0}^{\infty}$ назовем γ -оптимальной, если она допускает характеристику $\varphi = (f_t)_{t=0}^{\infty}$ та::ую, что все предельные точки последовательности $\{(f_{t_{\kappa}}, f_{t_{\kappa}+i})\}$ принадлежат множеству Q_{α} .

Существование φ -оптимальных траекторий следует из того, что любая бесконечная траектория, лежащая на нейкановской грани для всех моментов времени, является φ -оптимальной. Для таких траекторий искомой характеристикой является траектория $\varphi = \{f_t\}$, где $f_t = p$ для всех $t = 0,1,2,\ldots$, $p \in tnt \bigcap_{\alpha}$. В частности, траектория $f = (x_t)$, где $x_t = \alpha^t \overline{x}$, α — неймановский темп роста, $\overline{y} = \alpha \overline{x}$, заведомо является φ -оптимальной. Заметим, что в любой модели Неймана-Гейла, обладающей строго положительным равновесным вектором цен, имеется котя бы одна φ -оптимальная траектория, так как в этом случае модель содержит равновесную пару (\overline{x} , $\alpha \overline{x}$). В пункте 30 будет показан целый класс моделей Неймана, в которых все оптимальные траектории являются φ -оптимальными. Заметим также, что понятия φ -оптимальности и базисности оптимальных траек-

торий являются независимыми. Оказывается φ -оптимальные траектории хороши тем, что для них в модели Неймана имеет место теорема о магистрали в сильнейшей форме. Предварительно докажем следующую лемму, необходимую для доказательства теорем I.1 и 2.1.

ЛЕМА I.I. Пусть в модели Неймана—-Гейла $\mathcal Z$ имеется равновесная па—ра $(\mathcal Z,\alpha\mathcal Z)$, соответствующая тем—пу роста $\alpha=1$, такая что $\mathcal Z\gg O$. Любая характеристика $\mathcal P=(f_t)$ тра—ектории $\chi=(x_t)$ этой модели $\mathcal Z$ ог—раничена.

ДОКАЗАТЕЛЬСТВО. ИВ определения карактеристики следует, что функция $h_{\chi}(t) = f_t(x_t)$ убивает для любой траектории модели Неймана-Гейла. Возымем траекторию $\chi = (\mathcal{X}_t)$ такую, что для любого момента времени t имеет место равенство: $\mathcal{X}_t = \overline{\mathcal{X}}$. Из условия леммы следует, что такая траектория найдется. Из того, что вектор $\overline{\mathcal{X}}$ строго положителен и для любого t справедливо неравенство $f_t(\overline{\mathcal{X}}) \gg f_{x,t}(\overline{\mathcal{X}})$, следует ограниченность последовательности $\varphi = (f_t)$. Лемма доказана. Приводимая ниже теорема I.1 показывает, что в модели Нейма-

Приводимая ниже теорема I.1 показывает, что в модели Неймана для всех со -оптимальных траскторий имеет место теорема о магистрали в сильнейшей форме.

TEOPEMA I.I. Пусть в модели Неймана имеется равновесная пара $(\overline{x}, \alpha \overline{x})$, соответствующая темпу роста $\alpha=1$, такая что $\overline{x}>0$. Для любой φ — оп-тимальной траектории $\overline{\chi}=(\overline{x}_t)$ этэй модели найдется номер $\mathcal X$ такой, что для всех $t>\mathcal X$ имеет местовключение $(\overline{x}_t, \overline{x}_{t+1}) \in \mathcal N_{\alpha}$

ДОКАЗАТЕЛЬСТВО. Пусть $\varphi = (f_t)$ — такая характеристика траектории $\overline{\chi}$, что предел любой сходящейся подпоследовательности $\{(f_{t_K}, f_{t_K+1})\}$ принадлежит множеству Q_α . Из определения характеристики следует, что 1) для любого момента времени t имеет место неравенство $f_t \mathcal{A} \geqslant f_{t_*} \mathcal{B}$ и 2) на тех столбцах a^κ и θ^κ матриц \mathcal{A} и \mathcal{B} , которые используются в траектории $\overline{\chi}$ с положительной интенсивностью, достигается равенство. Теорема

будет докавана, если удастся покавать, что любой процесс $(\alpha_{\kappa}^{\kappa} \beta^{\kappa})$ с номером $\kappa \in \mathcal{I}$, $\mathcal{I} = \{m_{\gamma+1}, ..., m\}$ в оптимальной траектории $\overline{\chi} = (\overline{x}_{t})$ используется не более чем конечное число раз. Предположим противное, то есть пусть для какого-то процесса $(\alpha_{\kappa}^{\kappa} \beta^{\kappa})$, $\kappa \in \mathcal{I}$, найдется подпоследовательность (t_{κ}) , для которой интенсивность этого процесса $(\alpha_{\kappa}^{\kappa} \beta^{\kappa})$ в состоянии $(\overline{x}_{t_{\kappa}}, \overline{x}_{t_{\kappa}+1})$ положительна. Так как последовательность $(f_{t_{\kappa}})$ ограничена, из нее можно выделить сходящуюся подпоследовательность $f_{t_{\kappa}}$ f. Рассмотрим последовательность $(f_{t_{\kappa}})$. Из нее также можно выделить сходящуюся подпоследовательность: $f_{t_{\kappa}}$ f. Помимо этого, $f_{t_{\kappa}}$ f . Имеем, что $f(\alpha_{\kappa}) = g(\beta_{\kappa})^{2}$, $\kappa \in \mathcal{I}$, что противоречит тому условию, что $(f,g) \in Q_{\kappa}$. Теорема докавана.

ЗАМЕЧАНИЕ I. Из доказательства теоремы ясно, что если траектория модели Неймана не является у -оптимальной, то для нее теорема в магистрали в сильнейшей форме может и не быть справедливой. Заметим также, что у -оптимальность траектории не является необходимым условием того, что для нее имеет место теорема с магистрали в сильнейшей форме.

ЗАМЕЧАНИЕ 2. Если неймановская грань N_{α} такова, что принадлежащие ей траектории сходятся к равновесному лучу $(\lambda \mathcal{Z})_{\lambda > 0}$, то все γ -оптимальные траектории будут сходящимися к этому лучу $(\lambda \mathcal{Z})$.

мися к этому лучу $(\lambda x)_{\lambda > 0}$ Рассмотрим теперь модель Неймана, обладающую единственным (с точностью до множителя) равновесным вектором цен ρ (о таких моделях см. [3]). Оказывается, что в этой модели можно указать такую единую для всех оптимальных траекторий коническую окрестность луча цен, что оптимальная траектория принадлежит неймановской грани с того момента, с какого ее характеристика принадлежит этой окрестности луча цен $(\lambda \rho)_{\lambda > 0}$ можно взять люсую окрестность, определяемую неравенством

 $\mathcal{E} \leq \frac{g}{n(g_1 + g_2)}, \qquad \qquad \text{(I)}$ где $g = \min(\overline{p}(\alpha^K) - \overline{p}(\beta^K)) > 0$, g_1 и g_2 - наибольшие элементы соответственно матриц g_2 и g_2 . Точнее говоря, имеет место

ТЕОРЕМА I.2. Пусть $\overline{\chi} = (\overline{x}_t)$ — оптимальная (конечная или бесконечная) траектория модели неймана. Если существует её характеристика f_t) такая, что при некоторых t и c точки cf_t и cf_{t+1} находятся в ε — окрестности точ — ки $\overline{\rho}$ (где c>0, а число ε определяется из соотношения (I)), то пара $(\overline{x}_t, \overline{x}_{t+1})$ принадлежит неймановской грани \mathcal{N}_{d} .

ДОКАЗАТЕЛЬСТВО. Вектор $\overline{\rho}$ можно представить в виде: $\overline{\rho} = c f_{t+} + \delta$ и $\overline{\rho} = c f_{t+} + \delta$, где δ и δ - n -мерные векторы, абсолютная величина коорумнат которых меньше \mathcal{E} . Предполо-жим теперь, что $(\overline{x}_{t}, \overline{x}_{t+}) \in \mathcal{N}_{d}$. Отсюда следует, что вектор $w'_{t} = \mathcal{P}_{T_{p}} u_{t}$, где Γ - грань конуса R_{p}^{+} , натянутая на орты с номэрами $m_{t} + i$,..., m , неотрицателен и число \mathfrak{I} , равное сумме координат этого вектора, положительно. Заметим, что пара $\frac{1}{\sqrt{2}}(\overline{x}_{t}, \overline{x}_{t+})$ также не принадлежит неймановской грани \mathcal{N}_{d} и, кроме того, $\overline{\rho}(\frac{1}{\sqrt{2}} \overline{x}_{t}) - \overline{\rho}(\frac{1}{\sqrt{2}} \overline{x}_{t+}) = \frac{1}{\sqrt{2}}(\overline{\rho}(A_{2}u'_{t}) - \overline{\rho}(B_{2}u'_{t}))$. Положим $\frac{1}{\sqrt{2}} u'_{t} = \widetilde{u}_{t}$. Координаты вектора \widetilde{u}_{t} неотрицательны и $\overline{u}_{t} = \overline{u}_{t}$ и неотрицательны $\overline{u}_{t} = \overline{u}_{t}$ неотрицательны $\overline{u}_{t} = \overline{u}_{t}$ неотрицательны $\overline{u}_{t} = \overline{u}_{t}$ неотрицательны $\overline{u}_{t} = \overline{u}_{t}$ неотрицательны $\overline{u}_{$

$$\begin{split} &\mathcal{J} \leq \overline{p}\left(\mathcal{A}_{2}\,\widetilde{\mathcal{U}}_{t}\right) - \overline{p}\left(\mathcal{B}_{2}\,\widetilde{\mathcal{U}}_{t}\right) = \left(c\,\overline{f}_{t}\,+\,\delta\right)\left(\mathcal{A}_{2}\,\widetilde{\mathcal{U}}_{t}\right) - \left(c\,f_{t+1}\,+\,\delta^{\prime}\right)\left(\mathcal{B}_{2}\,\widetilde{\mathcal{U}}_{t}\right) = \\ &= \left(c\,\overline{f}_{t}\,(\mathcal{A}_{2}\,\widetilde{\mathcal{U}}_{t}\right) - c\,\overline{f}_{t+1}\left(\mathcal{B}_{2}\,\widetilde{\mathcal{U}}_{t}\right) + \left(\delta\left(\mathcal{A}_{2}\,\widetilde{\mathcal{U}}_{t}\right) - \delta'\left(\mathcal{B}_{2}\,\widetilde{\mathcal{U}}_{t}\right)\right) - \delta'\left(\mathcal{B}_{2}\,\widetilde{\mathcal{U}}_{t}\right) - \delta'\left(\mathcal{B}_{2}\,\widetilde{\mathcal{U}}_{t}\right). \end{split}$$
 Справедливость равенства $c\,f_{t}\,(\mathcal{A}_{2}\,\widetilde{\mathcal{U}}_{t}) = c\,f_{t+1}\left(\mathcal{B}_{2}\,\widetilde{\mathcal{U}}_{t}\right)$ следует из того, что

I) для любого момента времени t имеет место неравенство $\overline{f_t} \mathcal{A} \gg \overline{f_{t+1}} \mathcal{B}$;

- 2) на тех столбцах a^{κ} и b^{κ} матриц A и B, которые используются в оптимальной траектории χ с положительной интенсивностью, достигается равенство,
- 3) характеристика траектории определяется с точностью до положительного множителя. Далее, имеем:

мы получили неравенство $\gamma \leq r(\gamma_1 + \gamma_2) \cdot \mathcal{E}$, которое противоречит выбору числа \mathcal{E} . Теорема доказана.

СЛЕДСТВИЕ. Пусть оптимальная траектория $\overline{\chi} = (\overline{x}_t)_{t=0}^{\infty}$ такая, что для нее найдегся характеристика $\overline{\varphi} = (\overline{f}_t)_{t=0}^{\infty}$, сходящаяся к точке $c\overline{\rho}$ (c>0) на луче $(\lambda\overline{\rho})_{\lambda>0}$. Траектория $\overline{\chi}$ принадлежит к неймановской грани с того момента времени t, с ка-кого точки последовательности $(\frac{f}{c}\overline{f}_t)$ принадлежат конической ε -окрестности луча $(\lambda\overline{\rho})_{\lambda>0}$, где ε определяется из соотношения (I).

ДОКА ЗАТЕЛЬСТВО. Последовательность $(\frac{f}{c} \bar{f}_{\pm})$ является характеристикой траектории $\bar{\chi}$, сходящейся к точке $\bar{\rho}$. Полагая $\mathcal{E} = \frac{g}{n} \frac{g}{(g_f + g_2)}$, найдем номер \mathcal{L} , начиная с которого все точки последовательности $(\frac{f}{c} \bar{f}_{\pm})$ находятся в \mathcal{E} -окрестности точки $\bar{\rho}$. По тесреме 1.2 получаем справедливость указанного утверждения.

ЗАМЕЧАНИЕ. Оптимальные траектории, для которых найдутся характеристики, сходящиеся к равновесным векторам $p \in int \Pi_{\infty}$, составляют узкий подкласс в классе φ -оптимальных траекторий. Этим и объясняется то, что для них имеют место более сильные утверждения, чем для φ -оптимальных траекторий. Отметим также, что теорема I.2 и следствие из нее имеют место и в случае. если характеристика оптимальной траектории сходится к лучу $(\lambda p)_{\lambda \geqslant 0}$, где $p \in int \Pi_{\infty}$, и $y = min(p(\alpha^k) - p(\beta^k)) > 0$. Однако эти условия трудно проверяемы, если множество Π_{∞} состоит не из одного луча. В пункте 3^0 будут указаны условия, при которых в моделях Неймана множество Π_{∞} состоит из одного луча $(\lambda \overline{p})_{\lambda \geqslant 0}$. Кроме того, там же будет доказано, что в таких моделях любая характеристика любой бесконечно оптимальной траектории, исходящей из внутренней точки конуса \mathbb{R}_+^n , сходится к точке \mathbb{R}_+^n , где \mathbb{R}_+^n 0.

 2^{0} . Рассмотрим аналоги приведенных выше теорем для модели Гейла \mathcal{Z} . Пусть по-прежнему \mathcal{N}_{α} - неймановская грань мо-

дели $\mathcal Z$, соответствующая темпу роста $\ \ \, \alpha$ (напомним, что $\ \ \, \alpha$ считается равным I). Положим

$$Q_{\alpha} = \{ (f,g) \in \mathcal{Z}' : f(x) > g(y), (x,y) \in \mathcal{Z} \setminus \mathcal{N}_{\alpha} \},$$

где \mathcal{Z}' — модель, двойственная к модели \mathcal{Z} . Тем же способом, что и для модели Неймана, введем понятие γ —оптимальной траектории.

ТВСРЕМА 2.1. Пусть в медели Гейла \mathcal{Z} имеется равновесная пара $(\overline{\mathcal{Z}},\alpha\overline{\mathcal{Z}})$, соответствующая темпу роста $\alpha=1$, такая что $\overline{\mathcal{Z}}\gg o$. Любая γ — опти—мальная траектория $\overline{\chi}=(\overline{\mathcal{Z}}_{\underline{\chi}})$ этой модели сходится к неймановской грани \mathcal{N}_{α} .

ДОКАЗАТЕЛЬСТВО. Так как $\alpha=f$, то последовательность $(\overline{\mathcal{Z}}_{t})$ ограничена Предполагая, что заключение теоремы неверно, получим, что на ется сходящаяся подпоследовательность $\{(\overline{\mathcal{Z}}_{t_K}, \overline{\mathcal{Z}}_{t_K+f})\}$, предел (x,y) которой не принадлежит неймановской грани N_{α} . Так как конус $\overline{\mathcal{Z}}$ замкнутый, то пара (x,y) будет принадлежать множеству $\overline{\mathcal{Z}} : N_{\alpha}$. Рассмотрим последовательность $\{(f_{t_K}, f_{t_K+f})\}$, составленную из элементов характеристики $\varphi = \{f_t\}$ траектории $\overline{\chi} = (\overline{\mathcal{Z}}_t)$. По лемме I.I. эта последовательность ограничена. Следовательно, найдется подпоследовательность t_{Kq} такая, что $(f_{t_{Kq}}, f_{t_{Kq}+f}) \longrightarrow (f_{q})$. Так как траектория $\overline{\chi}$ является φ -оптимальной, то найдется такая характеристика $\varphi = (f_t)$, предел любой сходящейся подпоследовательности которой принадлежит множеству Q_{α} . Имеем: $(f,g) \in Q_{\alpha}$. Очевидно, что $(\overline{\mathcal{Z}}_{t_{Kq}}, \overline{\mathcal{Z}}_{t_{Kq}+f}) \longrightarrow (x_g)$. Из того, что траектория $\varphi = (f_t)$ является характеристикой траектории $\overline{\chi} = (\overline{\mathcal{Z}}_t)$, имеем: $f_{t_K}(\overline{\mathcal{Z}}_{t_Kq}) = f_{t_{Kq}+f}(\overline{\mathcal{Z}}_{t_{Kq}+f})$. Отсюдаентории $\overline{\chi} = (\overline{\mathcal{Z}}_t)$, имеем: $f_{t_K}(\overline{\mathcal{Z}}_{t_Kq}) = f_{t_Kq}(\overline{\mathcal{Z}}_{t_Kq})$, $\overline{\chi} = (f_{t_Kq}(\overline{\mathcal{Z}}_{t_Kq})$. Отсюдаентории $\overline{\chi} = (f_{t_Kq}(\overline{\mathcal{Z}}_{t_Kq})$ получим, что $f_{t_Kq}(\overline{\mathcal{Z}}_{t_Kq})$, $\overline{\chi} = (f_{t_Kq}(\overline{\mathcal{Z}}_{t_Kq})$.

ЗАМЕЧАНИЕ. При условиях теоремы любая φ -оптимальная траектория, растущая средним темпом α , сходится к точке $(x,y) \in N_{\alpha}$, причем $(x,y) \neq (0,0)$.

Рассмотрим модель Гейла $\mathcal Z$, обладающую единственным равновесным вектором цен $\overline p$. В этой модели $\mathcal Z$ имеет место

аналог теоремы I.2 при следующем дополнительном ограничении на модель: $\inf(\overline{p}(x) - \overline{p}(y)) = \emptyset > 0$ для всех $(x,y) \in \mathcal{Z} \setminus \mathcal{N}_{\mathcal{L}}$ и $\lim_{x \to y} y = \sum_{i=1}^{n} \{x\}^{i} + \{y\}^{i} = 1$, где $\{x\}^{i}$ и $\{y\}^{i}$ — координаты векторов x и y с номером i . Если это условие выполнено, то справедина

ТЕОРЕМА 2.2. Пусть $\overline{\chi}=(\overline{x}_t)$ — оптимальная (конечная или бесконечная) траектория моде — ли Гейла $\mathcal Z$. Если существует её характеристика $\overline{\varphi}=(\overline{f}_t)$ такая, что при некоторых t и c точки cf_t и cf_{t+1} входят в ε — окрестность точки $\overline{\varphi}$, где c>0 и $\varepsilon \leq \chi$, то пара $(\overline{x}_t,\overline{x}_{t+1})$ принадлежит неймановской грани $\mathcal N_\alpha$.

ДОКАЗАТЕЛЬСТВО. Вектор \overline{p} можно представить в виде: $\overline{p} = c \overline{f_t} + \delta$ и $\overline{p} = c \overline{f_{t+1}} + \delta'$, где δ' и $\delta' - n$ -мерные векторы, абсолютная величина координат которых меньше \mathcal{E} . Предположим теперь, что $(\overline{x}_t, \overline{x}_{t+1}) \overline{z} N_{\alpha}$. Отсюда следует, что $(x_t, x_{t+1}) \overline{z} N_{\alpha}$, где $x_t = \frac{\overline{x}_t}{\|(\overline{x}_t, \overline{x}_{t+1})\|}$ и $x_{t+1} = \frac{\overline{x}_{t+1}}{\|(\overline{x}_t, \overline{x}_{t+1})\|}$ Таким образом.

$$J \leq \overline{p}(x_{t}) - \overline{p}(x_{t+1}) = (c\overline{f}_{t} + \delta)(x_{t}) - (c\overline{f}_{t+1} + \delta')(x_{t+1}) =$$

$$= (c\overline{f}_{t}(x_{t}) - c\overline{f}_{t+1}(x_{t+1})) + (\delta(x_{t}) - \delta'(x_{t+1})) = \delta(x_{t}) - \delta'(x_{t+1}),$$
w. kdome toro.

 $\delta(x_t) - \delta(x_{t+1}) \le |\delta|(x_t) + |\delta'(x_{t+1})| \le \sum_{i=1}^n \{x_t\}^i + \{x_{t+1}\}^i = \mathcal{E}$, где $|\delta|$ и $|\delta'|$ — векторы, составленные из абсолютных величин координат соответственно векторов δ и δ' . Неравенство $\delta' \le \epsilon$ противоречит выбору числа ϵ . Теорема доказана.

СЛЕДСТВИЕ. Пусть $\overline{\chi}=(\overline{x}_t)_{t=0}^{\infty}$ — оптимальная траектория, для которой существует характеристика $\overline{\varphi}=(\overline{f}_t)_{t=0}^{\infty}$, сходящаяся к точке $c\overline{\rho}$ (c>0) на луче $(\lambda\overline{\rho})_{\lambda>0}$. Траектория $\overline{\chi}=(\overline{x}_t)_{t=0}^{\infty}$ принадлежит неймановской грани N_d с

того момента, с какого точки последовательности $(\frac{f}{c}\overline{f_t})$ принадле-жат $\mathcal E$ -окрестности точки $\overline{\mathcal D}$, где

Укажем также, что в рассматриваемой ситуации справедливы утверждения, содержащиеся в замечании к теореме 1.2.

3°. В этом пункте указывается класс модельй Неймана. в которых имеют место установленные выше теоремы.

Пусть модель Неймана $\mathcal Z$ определяется конусом $\mathcal Z(A,B)$, где $B=(E,B_2)$, $A=(A_1|A_2)$, E — единичная матрица порядка n, B_2 — матрица порядка n-n, A_1 и A_2 — матрицы, соответствующие E и B_2 . Далее, густь z - максимальное характеристическое число матрицы \mathcal{A}_{ϵ} . На модель \mathcal{Z} наложим следующие ограничения \mathcal{T}_{i} и \mathcal{T}_{2} , которые в дальнейшем будут играть существенную роль.

 \mathbb{T}_{ℓ}) Натрица $heta_{\ell}$ - примитивна.

Из этого предположения следует, что найдутся строго положительные и единственные (с точностью до множителя) в сторы \overline{x}

и \overline{o} такие, что $A_1 \overline{x} = z \overline{x}$, $\overline{p} A_1 = z \overline{p}$, где z > 0 (см. [2]). T_2) Имзет место неравенство $\overline{p} A_2 \geqslant z \overline{p} B_2$. Это условие (или $\overline{p} \alpha^{\kappa} \geqslant z \overline{p} \delta^{\kappa}$, $n+1 \leq \kappa \leq m$) с экономической точки зрения означает, что затраты при ценах \overline{D} на последних m-nбазисных процессах не меньше соответствующего выпуска при тех же ценах $\, \overline{
ho} \,$, умноженного на число $\, \, \overline{ } \,$. Заметим еще, что условие T_2 является необходимым и достаточным для того, чтобы число t_2 было темпом роста модели $\mathcal Z$ (см. [3]). Рассматриваемая модель является более общей, чем модель Моришимы, рассмотренная в [4]. Действительно, если [1] условие [7] заменить на более жесткое, а именно, требовать выполнение строгого нераченства $\overline{\rho} A_2 > z \overline{\sigma} B_2$, и 2) матрица B_2 специального вида (в частности, что каждая ее строка состоит из определенного числа нулей и единиц), то эта модель совпадает с моделью Моришимы.

и 7°_{2} . Убедимся, прежде всего, в справедливости следующей леммы.

BEMMA 3.1. Число 🤣 является единственным темпом роста модели 🛪 со строго положительным и единственным (сточностью до положительного множителя) равновесным вектором цен, равным вектору $\overline{\triangleright}$.

ДОКАЗАТЕЛЬСТВО. Единственность темпа роста следует из известной теоремы (см. [1]) о модели с состоянием равновесия ($\alpha,(\overline{x},\overline{y}),\overline{\rho}$) со строго положительными векторами $\overline{\mathcal{Z}}$ и $\overline{\rho}$. Кроме того, поскольку $\frac{1}{2}$ — темп роста модели \mathcal{Z} , то существует неотрицательный вектор ρ , для которого $\rho A_1 \geqslant z_0$. Это неравенство в силу ограничений $\overline{T_1}$ и $\overline{T_2}$ имеет единственное (с точностью до множителя) решение, равное вектору $\overline{\rho}$ (см. [2]). Лемма докатана.

ТЕОРЕМА 3.1. Пусть в модели Неймана \mathcal{Z} выполнены предположения \mathcal{T}_r и \mathcal{T}_2 . Далее, пусть $\overline{\mathcal{X}}=(\overline{x}_t)$ — бесконечно оптимальная траектория, исходящая из внутренней точки конуса $\mathcal{R}_r^{\mathcal{T}}$. Для любой характеристики $\overline{\mathcal{Y}}=(\overline{f}_t)$ траектории $\overline{\mathcal{X}}$ имеет место равенство $\lim_{t\to\infty} f_t \alpha^t = c\overline{\mathcal{P}}$, где c>0.

ДОКАЗАТЕЛЬСТВО. Пусть $\overline{\varphi}=(\overline{f_t})$ - произвольная характеристика оптимальной траектории $\overline{\chi}=(\overline{x_t})_{t=0}^{\infty}$, исходящей из начального состояния $\overline{x_o}\gg o$. Для удобства доказательства теоремы введем следующие обозначения. Положим $\rho_t=\alpha^tf_t\,\mathcal{D}^{-1}$ и

$$D = \begin{pmatrix} \overline{p_1} & 0 & \dots & 0 \\ 0 & \overline{p_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \ddots & \vdots & \overline{p_n} \end{pmatrix} ,$$

где D^{-1} — матрица, обратная к D , $\overline{p_i}$ — координата вектора \overline{p} с номером i . Пусть $p_{t,i}$ — координата вектора p_t с номером i . Применяя метод, похожий на тот, который оыл применен Моришимой (см. [4]) для доказательства сходимости к неймановскому лучу цен, можно доказать, что $\lim_{t \to \infty} \overline{c_t} = \lim_{t \to \infty} c_t = c$. Однако заметим, что здесь его метод применим только частично, так как в этой модели последовательность (C_t) может и не быть монотонно возрастающей. Кроме того, доказательство важного в

этой теореме неравенства $\mathcal{C} > \mathcal{O}$ в нашей модели удается провести, как нетрудно убедиться в этом ниже, дишь опираясь на прелложения, связывающие понятия характеристики траектории и траектории, растущей средним темпом с. Для доказательства того. что $\mathcal{C} > \mathcal{O}$, воспользуемся тем, что $\overline{\chi} = (\overline{\mathcal{Z}}_{+})$ - бесконечно оптимальная траектория модели Неймана, исходящая из внутренней точки конуса \mathcal{R}_{+}^{n} . Действительно, применяя теорему 3.3 из [I], получим, что траектория $\overline{\chi} = (\overline{x}_+)$ допускает характеристику. Так как $\overline{x}\gg o$, то для любой характеристики $\overline{\varphi}=(\overline{f_t})$ трасктории $\overline{\chi} = (\overline{x}_t)$ имеем, что $\overline{f}_0(\overline{x}_0) > 0$. Для трасктории $\overline{\varphi} = (\overline{f}_t)$ характеристикой является трасктория $\overline{\chi}=(\overline{x}_{\mu})$, так как 1) функция $h_{\overline{x}}=\overline{x}_t(\overline{f}_t)=\overline{f}_t(\overline{x}_t)=[\overline{f}_t\,\overline{x}_t]$ постоянна, 2) для любой траектории $\varphi = (f_t)$ модели \mathcal{Z}' функция $h_{\varphi} = \overline{x}_t(f_t) = f_t(\overline{x}_t)$ убывает. Справедливость последнего утверждения следует из того, что для любого $t=0,1,\ldots$ пара $(f_{t},f_{t+1})\in\mathcal{Z}'$, а потому $f_{+}(\bar{x}_{+}) > f_{+++}(\bar{x}_{+++})$.

Итак, любая характеристика $\overline{\varphi}=(\overline{f_t})$ траектории $\overline{\chi}=(\overline{x_t})$ является траекторией, допускающей характеристику $\overline{\chi}=(\overline{x_t})$, причем такую, что $\overline{f_o}(\overline{x_o})>0$. Далее, по лемме 3.1 модель $\overline{\chi}$ обладает состоянием равновесия $(\alpha,(\overline{x},\overline{y}),\overline{\rho})$ таким, что $\alpha=\frac{1}{2}$, $\alpha\overline{x}=\overline{y}>0$ и $\overline{\rho}>0$. Значит, модель $\overline{\chi}'$ имеет состояние равновесия $(\frac{1}{2},(\overline{f_s},\overline{g}),\overline{\chi})$ такое, что $\alpha\overline{f}=\overline{g}>0$ и $\overline{x}>0$ (чтобы убедиться в этом, достаточно положить $\overline{f}=\overline{\rho}H_1$ и $\overline{g}=\overline{\rho}$). Теперь, применяя лемму 4.2 из $\overline{\chi}$, получим, что траектория $\overline{\chi}=(\overline{f_t})$ растет средним темпом $\overline{\chi}$. Отсюда следует, что $\alpha>0$. Теорема доказана.

ЗАМЕЧАНИЕ I. В рассматриваемой модели $\mathcal Z$ все оптимальные траектории являются $\mathcal S$ —оптимальными, и потому справедливы теоремы, рассмотренные в пунктах $\mathbf I^0$ и $\mathbf 2^0$.

ЗАМЕЧАНИЕ 2. В доказательстве теоремы 3.1 существенную роль играла пара матриц $(\mathcal{A}_1, \mathcal{E})$. Теорема остается в силе, если эту пару заменить на другую пару матриц $(\widetilde{\mathcal{A}}_1, \widetilde{\mathcal{B}}_1)$, обладающую тем свойством, что матрица $\widetilde{\mathcal{A}}_1, \widetilde{\mathcal{B}}_2^{-1}$ примитивна.

ЗАМЕЧАНИЕ 3. Если в рассматриваемой модели \mathcal{Z} I) условие \mathcal{T}_2 заменить на более жесткое, а именно, требовать выполнение строгого неравенства $\overline{p}\mathcal{A}_2 > z\overline{p}\mathcal{B}_2$, 2) требовать примитивность отображенияx, определяемого конусом $\mathcal{Z}(\mathcal{A}_1, \mathcal{E})$, то

ж) Отооражение α называется (см. [4]) примитивным, если для любого начального состояния $x_{o>0}$ найдется натуральное число ε такое, что $x_{\varepsilon} \in \alpha^{\varepsilon}(x_{o})$ и $x_{\varepsilon} \gg 0$.

число ½ будет невырожденным темпом роста. В полученной таким образом модели любые конечные куски беслонечно оптимальных траекторий будут базисными в смысле следующего определения.

Допустимую траекторию $(x_t)_{t=0}^{\infty}$ назовем базисной, если для любого \mathcal{T} существует представление $x_t = \sum_{t=1}^m \alpha^i u_t^i$, $x_{t+1} = \sum_{t=1}^m \beta^i u_t^i$ ($t=0,1,...,\mathcal{T}^2$) такое, что вектор $(u_0^i,...,u_0^m,u_1^i,...,u_{n_1}^m,...,u_{n_1}^m,...,u_{n_1}^m)$ содержит не более $n\mathcal{T}^+\mathcal{K}$ отличных от нуля координат, где \mathcal{K} — некоторое натуральное число. Заметим, что мы здесь несколько видоизменили определение базисности траектории, однако, теорема 4.7 ([I]) остается в силе и для таких траекторий.

Автор выражает искреннюю благодарность своему научному руководителю А.М.Рубинову за внимание и помощь в работе.

Литература

- Макаров В.Л., Рубинов А.М., Суперлинейные точечно-множественные отображения и модели экономической динамики, УМН, 25:5 (1970). 125-169.
- 2. Гантмахер Ф.Р., Теория матриц, Наука, М., 1967.
- Жафяров в.Ж., О единственности равновесных цен в одной модели Неймана. Оптимизация, 2 (19), (1971).
- 4. M. Morishims, Equilibrium, Stability and Growth, Clarendon Pressylhondon, 1964.

Поступила в ред.-изд. отд. 10.XI. 1971 г.