Численные метолы

УДК 519.853.62

ПРОЦЕДУРЫ ОБНОВЛЕНИЯ В МЕТОДЕ СОПРЯЖЕННЫХ ГРАЛИЕНТОВ

Г.И. Забиняко

Рассмотрим применение метода сопряженных градиентов для определения минимума выпуклой непрерывно дифференцируемой функции f(x), $x \in R^n$. Если f в окрестности точки минимума имеет матрицу вторых производных, удовлетворяющую условию Липшица, то для метода установлена сверхлинейная скорость сходимости (см., например, [I]) при дополнительном условии, что в итерационном процессе используется обновление. Обновление состоит в том, что после выполнения по методу сопряженных градиентов цикла из R итераций смещение из текущей точки производится в направлении антиградиента.

Из опыта численных расчетов известно, что результативность цикла из n итераций может существенно зависеть от того, сделано ли обновление. Использование антиградиента в качестве начального направления в цикле зачастую снижает эффективность итерации, на которой производится обновление. В связи с этим в [2] на шагах обновления предлагается использовать не направление антиградиента, а некоторое другое направление. Для обоснования этого рассмотрен вариант метода сопряженных градиентов минимизации квадратичной функции, в котором процесс можно начинать с любого направления ρ такого, что $(\rho, \nabla f(x^0)) < 0$ ($\nabla f(x^0)$ — градиент в начальной точке x^0). Ниже предложена модификация этого метода, в котором за счет использования операции контроля за нарушением ортогональности повышается численная устойчивость. Для разъяснения избранного подхода приведем алгоритм из [2].

Итак, рассматривается задача минимизации $f(x) = \frac{1}{2}(Gx, x) + (b, x)$. Предположим, что G — положительно определена. Пусть дана система линейно—независимых векторов x^0, \ldots, x^{n-1} . Используя процесс Грама — Шмидта, из них можно образовать систему сопряженных относительно матрицы G векторов S^0, \ldots, S^{n-1} . В качестве Z^0 примем вектор P такой, что $(P, \nabla f(x)) < 0$, а остальные $Z^i = -\nabla f(x^i)$ (для краткости обозначим $\nabla f^i = -\nabla f(x^i)$). Процесс ортогонализации в этом случае дает следующую систему векторов:

$$S^{o} = \rho,$$

$$S^{i} = -\nabla f^{i} + \frac{(\nabla f^{o}, \nabla f^{i} - \nabla f^{o})}{(\rho, \nabla f^{i} - \nabla f^{o})} \rho,$$

$$S^{i} = -\nabla f^{i} + \frac{(\nabla f^{i}, \nabla f^{i} - \nabla f^{o})}{(\rho, \nabla f^{i} - \nabla f^{o})} \rho + \frac{\|\nabla f^{i}\|^{2}}{\|\nabla f^{i-1}\|^{2}} S^{i-1}, i > 1.$$
(I)

Этот метод отличается от стандартного, в котором, как известно, используется система направлений:

$$s^{\circ} = -\nabla f^{\circ},$$

$$s^{i} = -\nabla f^{i} + \beta_{i} s^{i+1}, \quad (\beta_{i} = \frac{\|\nabla f^{i}\|^{2}}{\|\nabla f^{i}\|^{2}}),$$

добавкой, учитывающей начальное направление $ho
eq -
abla f^o$.

Б работах [2,3] предлагается следующая процедура обновления в методе сопряженных градиентов для минимизации функции общего вида. Пусть выполнено ℓ итераци ℓ по стандартному алгоритму и получена точка ℓ^n . В качестве вектора ℓ предлагается принять $\ell^n = -\nabla f^n + \beta_n s^{n-1}$, т.е. продолжить вычисления с $\beta_\ell \neq 0$ и на итерации обновления. Далее,

$$S^{n+1} = -\nabla f^{n+1} + \beta_{n+1} S^n$$

Z

$$S^{n+i} = -\nabla f^{n+i} + \beta_{n+i} S^{n+i-1} + \frac{(\nabla f^{n+i} \nabla f^{n+i} - \nabla f^n)}{(S^n, \nabla f^{n+i} - \nabla f^n)} S^n \text{ для } i > 1.$$

В приведенном выше алгоритме из [2] не учитывается влияние распределения собственных значений матрицы С на процесс метода сопряженных градиентов. Известно, что если матрица G имеет *т* кратных собственных значений, то для минимизации квадратичной функции методом сопряженных градиентов требуется не более итераций (для того, чтобы это реализовалось Tem n-m+1 на практике, нужна хорошая обусловленность ${\mathcal G}$). Таким образом, в этом случае метоп сопряженных грапиентов не использует полную систему сопряженных направлений и приведенный выше алгоритм некорректен. Хотя, конечно, процессом ортогонализации Грама -Шмидта можно получить п сопряженных векторов для любой положительно определенной матрицы G. Алгоритм из [2] может не обеспечить сходимость к решению в случаях, когда матрица ${\mathcal G}$ MMeer m > 1кратных (или близких) собственных значений, а обусловленность $\mathcal G$ такова, что для решения задачи на ЭВМ требуется выполнить более чем n-m+1итераций.

Пусть матрица G имеет m близких собственных значений, а минимизация квадратичной функции производится методом сопряженных градиентов с использованием системы направлений (I). Для внчислений величины смещения \propto_{i}^{c} вдоль направления S^{i} определим два варианта:

I)
$$\alpha_i = \frac{\|\nabla f^i\|^2}{(Gs^i, s^i)}$$
, $\alpha_i = -\frac{(\nabla f^i, s^i)}{(Gs^i, s^i)}$.

Тогда на практике при применении рассматриваемого алгоритма могут реализоваться два особых случая в зависимости от используемого способа вычисления длины шага вдоль направления. В первом случае после выполнения некоторого числа итераций значение целевого функционала начинает возрастать и алгоритм, как правило, расходится. Во втором случае алгоритм генерирует последовательность точек, которая сходится к неоптимальной точке.

Предположим, что при применении нелинейного метода сопряженных градиентов мы попали в окрестность, в которой функция корошо описывается квадратичной моделью, а матрица вторых производных имеет группу близких собственных значений. Тогда второй случай дает иллюстрацию особенностей, к которым может привести применение метода сопряженных градиентов с использованием направлений (I). Эти особенности обусловлены тем, что в процессе решения нарушается ортогональность между текущим значением градмента и вектором ρ , который использовался на итерации обновления.

Алгоритм можно подправить, введя операцию контроля ортогональности векторов ∇f^i и ρ . Если на некоторой итерации выявляется нарушение ортогональности этих векторов, то предлагается на этой же итерации произвести обновление и в качестве ρ принять вектор $-\nabla f^i + \beta_i$ Sⁱ⁻¹.

Нам неизвестны данные о применении алгоритма из [2] в линейном случае. Для решения систем линейных уравнений с симметричными положительно определенными матрицами разработаны эффективные алгоритмы на основе метода сопряженных градивнтов без обновления [4]. Далее проведем сопоставление эффективности стандартного метода с обновлением через / итераций и модифицированного алгоритма [2] на линейных задачах.

Линейний метод сопряженных градиентов состоит в последовательном выполнении следующих вычислений:

$$S^{k} = -\tau^{k} + \beta_{k} S^{k-1},$$

$$\alpha_{k} = \frac{\|\tau^{k}\|^{2}}{(GS^{k}, S^{k})},$$

$$x^{k+1} = x^{k} + \alpha_{k} S^{k},$$

$$\tau^{k+1} = \tau^{k} + \alpha_{k} GS^{k},$$

$$\beta_{k+1} = \frac{\|\tau^{k+1}\|^{2}}{\|\tau^{k}\|^{2}},$$

где $\tau^{\kappa} = \nabla f^{\kappa} = G x^{\kappa} + b$. Для реализации стандартного линейного метода сопряженных градиентов на ЭВМ требуется 4 массива размера n. Трудоемкость выполнения одной итерации примерно равна трудоемкости вычисления n+5 скалярных произведений.

Реализация алгоритма по схеме (I) требует дополнительно 2 массива памяти размера n. Трудоемкость выполнения одной итерации, после выполнения обновления по схеме (I), примерно равна трудоемкости вычисления n+8 скалярных произвещений (при этом учтена и операция контроля ортогональности векторов n и n).

Задача	Распр едел ение ^λ і	Число итера- ций	. x [∞]	r _∞
I	$\lambda_i = i^2, i = \overline{1, 100}.$	700 175	3x10 ⁻⁵ 4x10 ⁻⁶	2x10 ⁻⁴ 9x10 ⁻⁸
2	$\lambda_{i} = 0.1i^{3}, i = \overline{1, 10};$	700	7xI0 ^{-I}	
	$\lambda_{i} = i^{2}, i = \overline{11, 100}.$	284	5xI0 ⁵	4xI0 ⁻⁸
3	$\lambda_{i} = 0.01i^{3}, i = \overline{1, 10};$	700	15	17
	$\lambda_i = i^2, i = \overline{11, 100}.$	700	2xI0 ⁻³	8xI0 ⁻⁴
4	$\lambda_{i} = 10^{3}/i^{3}, i = \overline{1, 100}.$	502	3xI0 ⁻⁵	5xI0 ⁻⁸
		458	2xI0 ⁻⁵	7xI0 ⁻⁸
5	$\lambda_{i} = 10^{3}/i^{3}, i = \overline{1, 50};$	295	2xI0 ⁻⁵	2xI0 ⁻⁸
	$\lambda_{i} = 10^{-3}, i = \overline{51, 100}.$	213	1x10 ⁻⁵	7xI0 ⁻⁸
6	$\lambda_{i} = 10^{3}/i^{3}, i = \overline{1, 50};$	422	1x10 ⁻⁴	9xI0 ⁻⁸
	$\lambda_{i} = 10^{-4}, i = 51, 100.$	286	IxI0 ⁻⁴	1xI0 ⁻⁷
7	$\lambda_{i} = 10^{3}/i, i = \overline{1, 50};$	700	IxIO ⁻⁴	2x10 ⁻⁶
	$\lambda_{i} = 10^{-3}$ (i-50), i=51,100	610	7xI0 ⁻⁵	9x10 ⁻⁸
8	$\lambda_1 = 10^3/1$, $i = \overline{1, 50}$;	700	3	6xI0 ⁻²
	$\lambda_{i} = 10^{-3}(i-50)^{3}, i=\overline{51, 100}.$	417	5xI0 ⁻⁶	9x10 ⁻⁸
9	$\lambda_{i} = (i - 1) + 0, 1i^{2}, i = \overline{1, 100}$	4 0I	5xI0 ⁻⁶	9xI0 ⁻⁸
		129	5x10 ⁻⁶	6x10 ⁻⁸
10	$\lambda_{i} = 10^{3}i, i = \overline{1, 30};$	200	2xI0 ⁻⁴	2xI0 ⁻⁸
	$\lambda_i = 0.01(1 + 0.03(i - 31)),$	191	2x10 ⁻⁴	1x10 ⁻⁷
	1 = 31, 100.	⊭7 00	54	397

П р и м е ч а н и е . Для каждой задачи первая строка результатов решения соответствует алгоритму \mathcal{GG} , вторая $-\mathcal{GGI}$; \mathbf{x} — решение задачи алгоритмом \mathcal{GGI} без контроля ортогональности векторов τ^k и ρ .

В таблице приведены данные по решению задач размерности $\mathcal{R}=100$ на ЭВМ БЭСМ-6. Стандартному алгоритму в таблице дано наименование \mathcal{CG} , а алгоритму, соответствующему схеме (I), - \mathcal{CG} .

Формирование задач основывалось на использовании матрицы W, столоцы которой представляют ортонормированную систему векторов. Матрица \mathcal{G} , фигурирующая в задачах, строилась из определенного распределения собственных значений λ_i . и $\mathcal{G} = W \lambda W^T$, где λ — диагональная матрица с диагональными элементами λ_i . Таким образом, задачи состояли в минимизации квадратичных форм $(\mathcal{G}x,x)$ или, что одно и то же, в решении однородных систем $\mathcal{G}x=0$. Вычисления во всех задачах начинались с точки $x_i^o=10, i=1,\dots,100$. В качестве критерия окончания решения использовалось условие $\|x^k\|_{\infty} <_{10}^{-1}$. Решение задачи также заканчивалось после выполнения 700 итераций.

Для контроля за нарушением ортогональности векторов \mathcal{C} и \mathcal{P} в алгоритме \mathcal{CGI} внуислялись значения $\mathcal{E}_{i}=|\mathcal{COS}<\mathcal{T}_{i}^{i},\mathcal{P}>|$ и сопоставлялись с заранее заданной величиной \mathcal{E} . Значение принималось равным $\sqrt{n\cdot \mathcal{E}m}$, где n-1 размерность задачи, а $\mathcal{E}m-1$ машинный эпсилон (для ЭВМ БЭСМ-6 $\sqrt{\mathcal{E}/m}\approx 4.5\times 10^{-13}$). По-видимому, при определении значения параметра \mathcal{E} размерность задачи необязательно учитывать, пока n-1 не слишком велико. Наши численные расчеты для разных задач размерности $n\leq 100$ подтверждают это предположение. (Данные таблицы практически не изменятся, если принять $\mathcal{E}=\sqrt{\mathcal{E}m}$.).

Если в алгоритме \mathcal{CGI} на некотором шаге оказывается, что $\mathcal{E}_{\mathcal{C}} > \mathcal{E}$, то на этой итерации производится обновление. Кроме того, в \mathcal{CGI} контролируется число итераций \mathcal{C} , которые выполняются между очередными итерациями обновления. Пусть на некоторой итерации алгоритма \mathcal{CGI} оказалось, что $\mathcal{E}_{\mathcal{C}} > \mathcal{E}$, но после последнего обновления произведено \mathcal{C} итераций \mathcal{CGI} обменьше некоторого критического значения $\mathcal{C}_{\mathcal{G}}$, то в \mathcal{CGI} обновление производится не по схеме (I) а по стандартному методу (в программе $\mathcal{C}_{\mathcal{G}} = 3$).

Проведем анализ некоторых данных из таблицы. В задаче I число обусловленности $\mathcal{C}=10^4$, и матрицу \mathcal{G} можно считать хорошо обусловленной для применения метода сопряженных градиентов, но \mathcal{G} имеет распределение $\lambda_{\mathcal{C}}$, неудобное для стандартного метода: все значения $\lambda_{\mathcal{C}}$ существенно различаются

друг от друга. Для целей анализа вниислительного процесса на итерациях алгоритма CG вниислялись величины $\delta_{\kappa} = |\cos c| < v^{\kappa}$, $v^{\kappa-1} > |$ для $\kappa > 1$. При решении задачи I по стандартному алгоритму максимальное $\delta_{\kappa} \approx 10^{-10}$. Преимущества алгоритма CGI в этой задаче сохраняются при произвольном внооре параметра $\varepsilon > 10^{-10}$. Заметим, что максимальное δ_{κ} и для задачи 3 примерно равно 10^{-10} .)

Распределение λ_i в задачах 2 и 3 отличается от распределения собственных значений матрицы G в задаче I тем, что произведены изменения значений для небольшой группы λ_i в сторону их уменьшения. Аналогичным образом можно построить другие примеры задач, исходя из других распределений λ_i , которые не решаются по алгоритму CG, а алгоритм CG1 позволяет получать решения с приемлемой точностью.

В задаче 4 ($\lambda_i = 10^3/i^3$, i = 1, ..., 100) более половини $\lambda_i \approx 10^{-3}$, причем величини $\delta \lambda_{ij} = 1 \lambda_i - \lambda_j 1$ при $i \neq j$ для многих из них имеют значения, примерно равние 10^{-5} . Видимо, здесь более уместно рассматривать величини $\delta \lambda_{ij}/c$, которые в нашем случае достигают значений порядка 10^{-11} и близки к уровно ошибок округления на ЭВМ БЭСМ-6. При решении задачи по стандартному методу сопряженных градиентов параметр δ_{κ} изменяется в пределах от 10^{-11} до 10^{-5} . Число итераций, необходимое для решения этой задачи по алгоритму CG1, существенно зависит от выбора значения параметра ε . При $\varepsilon = 10^{-4}$ для получения приближения к решению с заданной точностью алгоритм требует выполнения 592 итераций, а при $\varepsilon = 10^{-6}$ — 434 итераций. Без операций контроля ортогональности векторов для получения решения с заданной точностью в CG1 требуется выполнить 648 итераций.

Решение задач 5,6 и 8 по алгоритму *ССІ* без использования контроля за нарушением ортогональности получается за несколько меньшее количество итераций, чем указано в таблице. В задаче 7, наоборот, исключение операций контроля ведет к небольшому возрастанию числа итераций.

Задача 10 служит контриримером для алгоритма из работи [2]. В таблице для этой задачи приведены три строки результатов. Первая и вторая строки соответствуют алгоритмам \mathcal{CGI} и \mathcal{CGI} , а третья — использованию системы направлений (1) без контроля ортогональности векторов \mathfrak{T}^{κ} и \mathcal{P} . В последнем слу-

чае имеет место расходимость вичислительного процесса.

Данные таблицы наглядно показывают полезность применения метода сопряженных градиентов на основе (I) в линейном случае. Использование антиградиента в качестве направления спуска на итерациях обновления при решении плохо обусловленных задач может приводить к тому, что в разных циклах из л итераций формируются близкие системы векторов направления. Схема (I) позволяет получать большее разнообразие направлений и нам представляется, что корректное использование этого алгоритма позволяет несколько продвинуться вперед в части решения плохо обусловленных задач.

В заключение вернемся к вопросу применения схемы (I) в нелинейном методе сопряженных градиентов. В работе [3] достаточно детально рассматривался этот вопрос. В частности, там предлагалось на итерациях контролировать ортогональность ∇f^K и ∇f^{K+1} Если условие ортогональности не выполняется с заданной точностью, то предлагалось производить обновление, однако возможность нарушения ортогональности векторов объяснялась только за счет того, что функция не является квадратичной.

Наши рассмотрения показывают, что в нелинейный метод сопряженных градиентов необходимо дополнительно включить контроль точности выполнения условия ($\nabla f^{\kappa}, \rho$) = θ внутри самой схемы (І). Следовательно, на итерациях должно контролироваться выполнение двух соотношений: $1005 < \nabla f^{\kappa}, \nabla f^{\kappa+\epsilon} > 1 < \delta$ и $1005 < \nabla f^{\kappa}$ $ho > 1 \leq \delta_{\star}$. Обновление производится, если нарушается одно из этих условий или после последнего обновления выполнено л итераций. Значения величин δ и δ , должны существенно различаться. Параметр δ нельзя вноирать слишком малым, так как это может привести к частным обновлениям по стандартному методу и падению скорости сходимости. Значение δ_{s} должно бить достаточно малым, потому что, как видно из анализа численных расчетов в линейном случае, необходимо строго контролировать ортогональность векторов f^{κ} и ρ . Кроме того, нужно следить за количеством итераций между очередными моментами обновления, которые выполняются по схеме (I). Если такая проверка не предусмотрена, то воз-MOЖНО ВЫDОЖЛЕНИЕ АЛГОРИТМА. КОТОРОЕ СОСТОИТ В ТОМ, ЧТО ИСПОЛЬзуются направления (I), а обновление производится на каждой итерации. Последнее эквивалентно применению стандартного метода сопряженных градиентов без обновления. Таким образом, в нелинейном алгоритме необходимо предусмотреть обновление по стандартному методу, если по схеме (I) выполняется ℓ итераций между очередными моментами обновления и ℓ меньше критического значения ℓ_{o} .

При численной проверке нелинейного метода на тестовых задачах нами использовались значения $\mathcal{S}=\mathcal{QS}$ и $\mathcal{S},=\mathcal{QOI}$. Численные эксперименты показали высокую эффективность рассматриваемого алгоритма. Для некоторых тестовых задач наблюдалось сокращение числа итераций по сравнению со стандартным методом в 2-3 раза.

Анализ расчетов показывает, что типичным для применения нелинейного метода является случай, когда вначале вычислительного процесса обновления проводятся стандартным образом. И только после того, как точки оптимизирующей последовательности попадают в область, в которой целевая функция хорошо приближается квадратичной моделью, используются направления (I).

Автор выражает благодарность А.А.Каплану за полезные обсуждения.

Литература

- І. Поляк Б.Т. Введение в оптимизацию. М.: Наука, 1983.
- Beale E.M.L. A derivation of conjugate gradients in numerical methods for non-linear optimization. - London - New York: Academic Press, 1972. - P.39-43.
- Powell M.J.D. Restart procedures for the conjugate-gradient method// Math. Prog. 1977. N I2. - P.24I-254.
- 4. Уилкинсон Дж., Райнш К. Справочник алгоритмов на языке АЛГОЛ. Линейная алгебра. — М.: Машиностроение, 1976.

Поступила в ред.-изд. отдел 01.07.1989 г.