HOE PHIL.

Выпуклый анализ и смежные вопросы

УДК 517.98

ОБ ОСКОЛКАХ МАЖОРИРОВАННОГО ОПЕРАТОРА

Е.В.Колесников

В последнее время существенное развитие получила предложенная Л.В.Канторовичем теория мажорированных операторов на абстрактно нормированных пространствах (см. [1-3]). В [3] был поставлен вопрос о вычислении порядковых проекций таких операторов. В данной заметке приводится ряд формул для вычисления проекции на компоненту мажорированного оператора.

Рассмотрим вещественное векторное пространство X, архимедову векторную решетку E и E-значную абстрактную норму ρ , определенную на X. Тройку (X,ρ,E) назовем решеточно нормированным пространством (РНП). При этом, говоря о РНП, всегда будем считать, что норма разложима по Канторовичу (см. [I]): для любого $x \in X$ и $e \in E^+$ такого, что $e \le \rho(x)$, найдется $y \in X$, для которого $\rho(y) = e$, $\rho(x-y) = \rho(x) - e$. Пространством Банаха – Канторовича (ПБК) назовем o-пол-

Рассмотрим РНП (X, ρ, E) и ПБК (Y, q, F). Предполагаем, что $\{q(Y)\}^{dd} = F$. Несложно проверить, что F. K-пространство и, следовательно, регулярные операторы из E в F также образуют K-пространство $L_2 := L_2(E, F)$. В пространстве мажорированных операторов M := M(X, Y) введем абстрактную норму, сопоставляя каждому оператору $F \in M$ наименьшую из его мажорант $\| F \| \in L_2$. При этом оказывается, что $(M, \| \|, L_2)$ есть ПБК и, в частности, норма $\| \|$ разложима.

Обозначим через $\mathcal{R} / (\mathcal{L}_{\tau})$ алгебру порядковых проекторов в \mathcal{K} -пространстве \mathcal{L}_{τ} . Из разложимости нормы $\|\cdot\|$ следует, что каждый проектор $\mathcal{R} \in \mathcal{R} / \mathbb{C}$ индуширует операции проектирования в пространстве \mathcal{M} : для любого $\mathcal{T} \in \mathcal{M}$ найдется

единственный оператор $\pi T \in \mathcal{M}$ такой, что $\|\pi T\| = \pi \|T\|$ и $\|T - \pi T\| = \|T\| - \pi \|T\|$. Таким образом на \mathcal{M} определена алгебра $\mathcal{R}^{r}(\mathcal{M})$ порядковых проекторов, изоморфная порождающей ее алгебре $\mathcal{R}^{r}(\mathcal{L}_{\alpha})$.

Для произвольных операторов $\mathcal{P} \in \mathcal{L}_{\mathcal{I}}$ и $\mathcal{T} \in \mathcal{M}$ рассмотрим множества

$$\mathcal{E}(\mathcal{P}) = \left\{ \pi \mathcal{P} : \pi \in \mathcal{R} r(\Delta_{n}) \right\} = \left\{ S \in \Delta_{n} : |S| \land |\mathcal{P} - S| = 0 \right\};$$

$$\mathcal{E}(\mathcal{T}) = \left\{ \pi \mathcal{T} : \pi \in \mathcal{R} r(\mathcal{M}) \right\} = \left\{ S \in \mathcal{M} : ||S| \land ||\mathcal{T} - S|| = 0 \right\}$$

осколков операторов ${\mathcal P}$ и ${\mathcal T}$ соответственно.

Пусть $\varphi \in \angle_{\tau}^+$. Напомним некоторые сведения о структуре множества $\mathcal{E}(\varphi)$

В работе [4] были введены проекторы $\pi_e \in \mathcal{R}r(\angle_{\chi})$, где $e \in E^+$ и

$$\pi_e \varphi_z = \sup_n \varphi(z \wedge ne) \quad (z \ge 0).$$

Рассмотрим множество $A \subset \mathcal{R}_{\Gamma}(\angle_{2})$ проекторов вида $0 - \sum_{\rho} \cdot \mathcal{R}_{e_{\alpha}}$, где $(e_{\gamma}) \subset \mathcal{E}^{+}$, $(\rho_{\alpha}) \subset \mathcal{R}_{\Gamma}(F)$ — разбиение единичного проектора $\mathcal{A} \in \mathcal{R}_{\Gamma}(F)$, т.е. $\sup_{\rho} \rho_{\alpha} = \emptyset$, $\rho_{\alpha} \wedge \rho_{\beta} = \emptyset$ ($\alpha \neq \beta$). Обозначим через $A(\mathcal{P})^{\ell}$ множество точних нижних граней направленных подмножеств $A(\mathcal{P}) = \{\pi\mathcal{P} : \pi \in A\}$, $A(\mathcal{P})^{\ell \ell}$ — множество точних верхних граней направленных подмножеств $A(\mathcal{P})^{\ell}$. Известно, что $\mathcal{E}(\mathcal{P}) = A(\mathcal{P})^{\ell \ell}$.

В множестве A введем порядок >> , полагая $o-\sum \rho_{\alpha} \times \pi_{e_{\alpha}} >> o-\sum \rho_{\alpha} \cdot \pi_{e_{\alpha}}$, если для любого β найдется α такое, что $\rho_{\alpha} \leq \rho_{\alpha}$ и $e_{\alpha} \leq e_{\alpha}$.

такое, что $\rho \in \rho$ и $e_g \in e_g$.

1. Для произвольного оператора $S \in \angle_{\tau}^+$ символом O_g обозначим проектор в \angle_{τ} на компоненту $\{S\}^{dd}$. Из структуры $\mathcal{E}(\mathcal{P})$ следует справедливость следующей формулы (ср. [2]):

$$(\varphi - \delta_{S} \varphi) e = \sup \left\{ \inf_{n} \pi_{n} \varphi e : \pi_{n} \in A, \pi_{n} >> \pi_{n+1}, \\ n \in N, \pi_{n} S e \leq \frac{1}{n} S e \right\} \quad (e \in E^{+}).$$

2. Hyerb $e \in E^+$ in $T \in M$, для каждого $x \in X$ положим $\pi_a T x = o - \lim \left\{ T x_a : \rho(x - x_a) = \rho(x) - \rho(x_a) \right\},$

$$\rho(x_n) = \|T\|(\rho(x) \wedge ne)\}.$$

Несложно проверить, что $\mathcal{R}_{\epsilon}\mathcal{T}$ — корректно определенный осколок оператора \mathcal{T} и $\|\mathcal{R}_{\epsilon}\mathcal{T}\| = \mathcal{R}_{\epsilon}\|\mathcal{T}\|$.

Если теперь $\mathcal{R} = 0 - \sum \rho \cdot \mathcal{R}_e \in \mathcal{A}$, то ясно, что соотношение $\mathcal{R} \mathcal{T} \mathcal{X} = 0 - \sum \rho \cdot \mathcal{R}_e \mathcal{T} \mathcal{X}$ определяет соответствующий осколок оператора \mathcal{T} . Всиду в приводимых формулах \mathcal{O} -пределы в ПБК существуют.

3. Справедливо следующее утверждение: пусть $T\in M$, $(T_{\alpha})\subset \mathcal{E}(T)$ и $\|T_{\alpha}\|\overset{\sigma}{\longrightarrow}\mathcal{P}$. Тогда найдугся $S=o-\lim_{n\to\infty}T_{\alpha}\in\mathcal{E}(T)$ и $\|S\|=\mathcal{P}$.

Действительно, для произвольного $x \in X$ имеем

$$\begin{split} q(T_{x}x - T_{y}x) &\leq \|T_{x} - T_{y}\| \, \rho(x) \leq \mathcal{P}_{\Lambda}(\|T - T_{x}\| + \|T - T_{y}\|) \, \rho(x) + (\|T\| - \mathcal{P})_{\Lambda}(\|T_{x}\| + \|T_{y}\|) \, \rho(x) \xrightarrow{\mathcal{O}} 0 \; . \end{split}$$

Следовательно, направление $\mathcal{T}_{\propto} x$ o-фундаментально и существует S=o- ℓm \mathcal{T}_{\sim} . Очевидно, что $\|S\|=\mathcal{P}$ и $S\in\mathcal{E}(\mathcal{T})$.

4. Из пп. I и 3 получаем, что для произвольных операторов Γ , $S \in \mathcal{M}$ и $x \in X$ справедливо равенство

$$(7-\sigma_{\parallel S\parallel}T)x=o-\lim_{n}\{z-\lim_{n}Tx:\pi_{n}\in A,$$

$$\pi_n >> \pi_{n+1}, n \in \mathbb{N}, \ \pi_n \|S\| p(x) \leq \frac{1}{n} \|S\| p(x) \Big\}.$$

В частности, если \digamma — пространство вещественных чисел, т.е. У — банахово пространство, то мажоранты операторов являются функционалами и формула принимает вид

$$(T-\sigma_{\|S\|}T)x = 0 - \lim_{n \to \infty} \{r - \lim_{n \to \infty} \pi_n Tx :$$

$$(e_n) \subset E^+, e_n l, \mathcal{R}_{e_n} | S | \rho(x) \leq \frac{1}{n}$$
.

Кроме того, справедлива формула

$$(T-\mathcal{O}_{\|S\|}T)x=0-\lim_{m}\left\{0-\lim_{m}x-\lim_{n}\pi_{(e_{n}-\frac{1}{m}\rho(x))}+\right.Tx:$$

$$0 \le (e_n) \le \rho(x), e_n l, \|s\|e_n \le \frac{1}{n} \},$$

имеющая аналогичный виц и в операторном случае.

5. Исходя из п.3, можно вычислить также порядково непрерывную составляющую мажорированного оператора (ср. [3]).

Пусть $\mathcal{G}d(E)$ — множество порядково плотных идеалов (= фундаментов) решетки E . В [4] было показано, что для каждого $\mathcal{P}\in \mathcal{L}_{n}^{+}$ непрерывную составляющую $\mathcal{P}_{n}\in \mathcal{L}_{n}$ оператора \mathcal{P} можно вычислить по формуле

$$\varphi_n e = \inf \{ \sup \pi_g \varphi_e : g \in Q^+, Q \in \mathcal{I}d(E) \} (e \in E^+).$$

Следовательно, для каждого оператора $\mathcal{T}\in\mathcal{M}$ имеет место разложение $\mathcal{T}=\mathcal{T}_n+\mathcal{T}_s$, где $\|\mathcal{T}_n\|=\|\mathcal{T}\|_n$ и $\|\mathcal{T}-\mathcal{T}_n\|=\|\mathcal{T}\|-\|\mathcal{T}\|_n$. При этом

$$T_n x = o - \lim \{ o - \lim_{q} \pi_q Tx : g \in Q^+, Q \in \mathcal{I}d(E) \}.$$

6. Оператор $S \in \mathcal{M}$ называют o -непрерывным, если $g S x_{\sim} \xrightarrow{o} o$, как только $\rho x_{\sim} \xrightarrow{o} o$. Множество всех o -непрерывных операторов обозначим через \mathcal{X}_o . Множество операторов, имеющих o -непрерывную мажоранту, - через \mathcal{M}_n .

Верно следующее равенство (ср. [2]):

$$M_n = \mathcal{L}_o \cap M$$
.

Оператор $S \in \mathcal{M}$ называют сингулярным, если для любого $\mathcal{T} \in \mathcal{L}_0$ такого, что $\|\mathcal{T}\| \leq \|S\|$, следует $\mathcal{T} = 0$. Как следствие указанного равенства можно получить такое утверждение: в разложении $\mathcal{T} = \mathcal{T}_n + \mathcal{T}_S$ мажорированного оператора $\mathcal{T} \in \mathcal{M}$ оператор \mathcal{T}_n O-непрерывен, \mathcal{T}_S - сингулярен. Автор благодарит А.Г.Кусраева за интерес к работе.

Литература

- Канторович Л.В., Вулих Б.З., Пинскер А.Г. Функциональный анализ в полуупорядоченных пространствах. - М.-Л.: Гостехиздат, 1950.
- Кусраев А.Г., Стрижевский В.З. Решеточно нормированные пространства и мажорированные операторы // Исследования по геометрии и анализу. - Новосибирск: Наука, 1986. - С.56-102.
- 3. Кусраев А.Г., Малюгин С.А. О порядково непрерывной составляющей мажорированного оператора // Сиб. мат. журн. -1987. - Т.28, №4. - С.127-139.
- 4. Колесников Е.В. Осколки положительного оператора // Оптимизация. — 1987. — Вып. 40(57). — С.141—146.

Поступила в ред.-изд. отдел 15.03.1988 г.