Модели динамики и равновесия

УЛК 519.865.3

ВПОЛНЕ ДОГОВОРНЫЕ И ВАЛЬРАСОВСКИЕ СОСТОЯНИЯ: В **z-репликах** Рынков

А.Н.Козирев

В этой работе исследуются соотношения между множествами вполне договорных и вальрасовских состояний в 2 -репликах рынка, удовлетворяющего стандартным требованиям [1]. Получены достаточные условия совпадения указанных множеств во всех репликах рынка, начиная со второй, и построек пример рынка, для всех реплик которого эти множества различны. Все основные результаты работы сосредоточены в §3. Первые два параграфа играют вспомогательную роль. В §1 вводятся основные определения и обозначения, а также сообщаются некоторые известные результаты теории рынков. Используемые здесь понятия договора, системы договоров и операции над ними не отличаются от аналогичных понятий из [2.3], а определения устойчивой системы договоров и вполне договорного состояния отличаются формой записи и отсутствием некоторых второстепенных деталей. Благодаря этому более нагляцно проявляется сходство между множеством вполне договорных состояний и ядром рынка, можно даже говорить просто о двух различных определениях ядра. В §2 собраны необходимые сведения из теории субдифференцирования и доказаны три небольшие леммы, имеющие много полезных для дальнейшего следствий. Некоторые результаты этого параграма известны или близки к известным, но они приводятся в удобной для последующего использования форме, несколько отличной от общепринятой [4,5]. Поэтому все три леммы снабжены полными доказательствами со ссылками на монографию[6].

§I. Рынки и 2-реплики рынков

Рынком обычно называют четверку $\mathcal{E} = \langle \mathcal{N}, \mathcal{R}_+^{\mathcal{M}}, \mathcal{U}, \alpha \rangle$, где $\mathcal{N} = \{1,2,\ldots,n\}$ — множество экономических агентов (торговцев), $\mathcal{R}_+^{\mathcal{M}}$ — множество допустимых насоров продуктов (товаров), $\mathcal{U} = \{u_i\}_{i=1}^n$ — насор бункций полезности и $\alpha = \{\alpha^i\}_{i=1}^n$ — начальное распределение товаров. Тункции полезности удобно считать заданными на всем пространстве продуктов $\mathcal{R}_+^{\mathcal{M}}$, но принимающими значения — на множестве $\mathcal{R}_+^{\mathcal{M}} \mathcal{R}_+^{\mathcal{M}}$ и конечные значения — на $\mathcal{R}_+^{\mathcal{M}}$. Кроме того, относительно всех функций полезности будем предполагать строгую вогнутость на $\mathcal{R}_+^{\mathcal{M}}$, замкнутость в смысле замкнутости подграфика и монотонность по возрастанию. Эти требования соответствуют общепринятому стандарту [1] и не нуждаются в разъяснении. Без ограничения общности можно считать, что $\alpha^i \neq 0$ для каждого $i \in \mathcal{N}$ и $\sum_{i=1}^n \alpha^i \in \mathcal{I}_+^{\mathcal{M}}$. В противном случае следует рассматривать рынок с меньшим числом торговцев или с меньшим числом наименований товаров. Пространством допустимых состояний рынка или возможных распределений товаров называется множество $\mathcal{M}_+^{\mathcal{M}}$ —мерных векторов

 $X = \{x = (x, x, x, \dots, x, x) \in (R^m)^n | \sum_{i=1}^n x^i = \sum_{i=1}^n \alpha^i \}.$ Через P обозначим стандартный симплекс в R^m , называемый иногда симплексом цен, а через $\langle P, y \rangle$ — скалярное произведение векторов $P \in P$ и $y \in R^m$. Ножество вальрасовских состояний, ядро и границу Парето рынка \mathcal{E} обозначим соответственно через $W(\mathcal{E})$, $C(\mathcal{E})$ и $\Theta(\mathcal{E})$.

Как и в [2], договором v будем называть пару (x(v), S(v)), где

$$x(v) \in cone(X-X), s(v) \in G=2^{n} \{\varphi\},$$

причем $x^i(v) = 0$ для всех $i \notin S(v)$, а системой договоров – конечное семейство $V = \{v_{\xi}\}_{\xi \in \Sigma}$, где Ξ – множество номеров договоров. Обозначим через $\mathcal D$ совокупность всевозможных систем договоров, а через F — отображение, определенное на множестве $\mathcal D \times G$ и сопоставляющее каждой паре (V,s), где $V \in \mathcal D$ и $S \in G$, множество $F(V,s) \subset \mathcal D$, состоящее из всевозможных систем договоров, которые коалиция

lpha может получить из ${\mathcal V}$. Заключая новые поговоры ${\mathbb Z}$ разрывая часть старых. Свойства отображения 💆 полностью определяются правилами заключения и разрыва договоров коалициями из $\widetilde{\sigma}$, Далее, как и в [2.3], предполагается, что произвольная коалиция $5 \in \mathcal{O}$ может заключать договоры с участием только тех торговцев, которые входят в S , и разрывая поговоры, в которых задействован котя бы один торговец из 5 . Формальная запись деиствован коги од один. Причен положим $x(V) = \sum_{k \in \mathbb{Z}} x(v_k)$ иля $V \in \mathcal{D}$.

Система договоров V доминируема по коалиции $s \in \mathcal{G}$, если существует вектор

$$\bar{x} \in conv\{\alpha + x(V) | V' \in F(V, s)\}$$

такой. Что для каждого $\dot{z} \in S$ выполняется неравенство

$$u_i(\bar{x}^i) \geq u_i(\alpha^i + x^i(V)),$$

причем для некоторого $\dot{\iota}_o \in \mathcal{S}$ неравенство с**трогое.** Система договоров V , не доминируемая ни по одной коалиции из σ , называется устойчивой, а соответствующее ей состояние рынка $\alpha + x(V)$ — вполне договорным. Множество вполне цоговорных состояний рынка ε обозначим через $\mathcal{D}(\varepsilon)$. Тогда из локазанного в [3] следует справедливость цепочки включений

$$c(\varepsilon) \supset D(\varepsilon) \supset W(\varepsilon)$$
.

Напомним, что 2 -репликой \mathcal{E}^2 рынка \mathcal{E} называется составная экономическая модель, включающая z субэкономик $\delta(v)$, $V = \sqrt{2}$, идентичных исходной модели рынка. Все составляющие рынка (3 (у)) отличаются от соответствующих составляющих других субркономии только номером γ . Каждый торговец рынка $\mathcal E$ имеет двойной номер (V, i) , где $V = \sqrt{2}$ я $i = \sqrt{n}$. Как и в исходной модели, считаются допустимыми все коалиции. Допустимне состояния рынка \mathcal{E}^z обозначаются через $\{x(v)\}_{v=1}^2$, при этом разумеется $x(v)((R_v^n)^n$ для всех v=1/2 и

 $\sum_{i=1}^{N} \sum_{j=1}^{N} x^{i}(v) = 2 \sum_{i=1}^{N} a^{i}$. В распределениях из ядра 7 — реплики рынка однотипные игроки (торговци) получают равные доли [I], т.е. для любого $\{x(v)\}_{v=1}^{2}$ $\in \mathcal{C}(\mathcal{E}^{2})$ при всех V , v'=1.7 . Выполняются равенства x(v)=x(v') . В дальнейшем, если это не приводит к путанице, используется запись $x \in \mathcal{C}(\mathcal{E}^z)$ вместо $\{x(v)\}_{v=1}^z \in \mathcal{C}(\mathcal{E}^z)$, где x(v) = x

для всех $V = \sqrt{x}$. В этом смысле множества вальрасовских состояний рынков & и & совпадают, а ядра рынков & стягиваются к множеству вальрасовских состояний [1], т.е. из условия $x \in \mathcal{C}(\mathcal{E}^2)$ для всех $z = 1, \infty$ следует $x \in \mathcal{W}(\mathcal{E})$. Поскольку любое вальрасовское состояние является вполне договорным, а вполне договорное обязательно принадлежит ядру, отсюда сразу следует равенство $\mathcal{D}(\mathcal{E}^2) = W(\mathcal{E})$. Более тонкие свойства последовательности множеств $\{\mathcal{D}(\mathcal{E}^2)\}_{2=1}^2$ ис следуются в \$3.

Некоторые свойства субдифференциалов функций полезности

Поскольку рассматриваемые в этой работе функции полезности вогнуты, а субдифференциал в [6] определен для выпуклой функции, почти все ссылки на [6] следует понимать с точностью до знаков неравенств.

Производную функции u_i в точке y по направлению y' обозначим через $u_i'(y;y')$, а ее субдифференциал в той же точке – через $\partial u_i(y)$. Производная по направлению $u_i(y_i)$, понимаемая как функция от вектора направления y_i , монотонна, вогнута и положительно однородна [6]. Субдифференциал вогнутой функции является выпуклым замкнутым множеством. Если $y \in xt$ $dom u_i$, то множество $\partial u_i(y)$ непусто и компактно [6], но для $y \in xt$ $dom u_i$ множество $\partial u_i(y)$ может оказаться пустым. ЛЕММА І. Если $x \in \theta(\mathcal{E})$, то из условия

 $x^{i}\neq 0$ следует $\partial u_{i}(x^{i})\neq \emptyset$, причем $\partial u_{i}(x^{i})\in int \mathcal{R}_{+}^{m}$. ДОКАЗАТЕЛЬСТВО. Пусть $x\in \Theta(\mathcal{E})$ и $\partial u_{i}(x^{i})=\emptyset$, $x^{i}\neq \emptyset$, для некоторого i, $\in \mathcal{N}$. Тогда существует направление $y\in \mathcal{R}^{m}$ такое, что

 $\mathcal{U}_{i_0}'(x^{i_0};y)=\infty$; $\mathcal{U}_{i_0}'(x^{i_0};-y)=-\infty$. Лля каждого $i\in \mathcal{N}$ положим $\hat{x}^i=\sum\limits_{i=1}^{\infty}\frac{\alpha^i}{n}$. Состояние $\{\hat{x}^i\}_{i=1}^{n}$ monyetumo, nockoneky $\sum_{i=1}^{n} x^i = \sum_{i=1}^{n} \alpha^i$, independent $\hat{x}^i \in \mathcal{C}$ and $\hat{x}^i \in \mathcal{C}$. Hattiefts $\hat{x} > \hat{x}^i$, the kotoporo $\hat{x} = \hat{x}^i > \hat{y}$, a notomy $u_i'(x^i; \lambda \tilde{x}^i) \ge u_i'(x^i; y) = \infty$.

Стенда в силу положительной однородности (муниции $\mathcal{U}_{i_0}(x^{i_0};\cdot)$ получим $\mathcal{U}_{i_0}(x^{i_0};\hat{x}^{i_0})=-$. Направление x^{i_0} допусти– мо, следовательно, $\mathcal{L}_{i}^{\prime}(x^{i_0}; -\lambda x^{i_0})>-\infty$ при любом $\lambda \geq 0$. Направления x^i-x^i для всех $i\in N$ также допустими, т.е. $\omega_i(x^i; \tilde{x}^i-x^i)>-\infty$. Ввиду строгой монотонности функций ω_i при всех $i\in N$ выполняются неравенства $(\iota, (x^i, x^{i_0}) > 0$, а значит, найдется $\lambda > 0$ такое,

$\lambda u_{i}'(x^{i}; x^{i}) + (n-1)u_{i}'(x^{i}; \tilde{x}^{i} - x^{i}) > 0$

цля каждого $i\in\mathcal{N}$. Откуда в силу вогнутости и положительной однородности функций $\mu_i'(x^i;\cdot)$ получаются нера-

 $u_i'(x^i; \tilde{x}^{i} - x^{i} + [\lambda/(n-1)]x^{i_0}) > 0, \ i \neq i_0; \ u_{i_0}'(x^{i_0}; \tilde{x}^{i_0} - (\lambda+1)x^{i_0}) = \infty.$

Это значит, что $x \notin \Theta(\mathcal{E})$, но $x \notin \Theta(\mathcal{E})$ по первоначальному предположению. Из полученного противоречия следует непустота субдифференциала $\partial \mathcal{U}_{i}$ (x^{i_0}) . Остается проверить включение $\partial \mathcal{U}_{i}$ (x^{i_0}) \mathcal{C} . Предположим противное, т.е. существует вектор $g \in \partial \mathcal{U}_{i}$ (x^{i_0}) \mathcal{C} лобого направления $g \in \mathcal{R}$. С другой стороны, для любого направления $g \in \mathcal{R}$ выполняется неравенство

 $u_i(x^i;y) \le \inf\{\langle y,g\rangle | g\in\partial u_i(x^i)\} \le \langle \bar{g},y\rangle$, т.е. $u_i(x^i;y) \le 0$, что противоречит строгой монотонности функции u_i . Полученное противоречие завершает доказательство.

CHEMICTEME I. E C J H $x \in C(\mathcal{E})$, To $\partial u_i(x^i) \neq \emptyset$ для всех *i є N*

СЛЕДСТВИЕ 2. Если $x \in C(\mathcal{E})$ и направление $\mathcal{G} \in \mathcal{R}^m$ допустимо в точке $x^i \in \mathcal{R}^m_+$, то производная $\mathcal{U}_i(x^i;y)$ конечна.

G, a vepes cl cone G - ee samukamme.

лемма 2. Пусть K_i , $i=0,\ell$, — выпуклые замкнутые множества , причем K_i , $i=1,\ell$, конусы, а К, не содержит начала координат. Если

cl cone $K_0 \cap (\bigcap_i K_i) = \{0\},$ то существует набор $\{f_i\}_{i=1}^{\ell}$ векторов $\{f_i\}_{i=1}^{\ell}$

 $\inf\{\langle f_i, g \rangle | g \in K_i \} \ge 0$ для каждого $i = 1, \ell$ и

 $sup\{<\sum_{i=1}^{k}f_{i},g>|g\in K_{i}\}<0,$

т.е. множество K_0 можно строго отделить от набора конусов $\{K_i\}_{i=1}^2$ набором гиперплоскостей, прохоначало координат

ЛОКАЗАТЕЛЬСТВО. Множества

 $K = \bigcap_{i=0}^{r} K_i$, $Q = \{q = (q, q, ..., q) \in (R^m)^{l+1}\}$ выпуклы и замкнуты в $R^{m(l+1)}$, причем $K \cap Q = \emptyset$ или, что то же самое, $\emptyset \notin K - Q$. Более того, $\emptyset \notin \mathcal{A}(K - Q)$, иначе.

cl cone $K_0 \cap (f(K_i) \neq \{0\},$

что противоречит условию лемми. Пусть $f = \{f_0, f_1, \dots, f_\ell\} \in \mathbb{R}^{m(\ell+1)}$ оближайшая к начаду координат точка из cl(K-Q). Остается убедиться, что $\sum_{\ell} f = -f_0$ и набор векторов $\{f_\ell\}_{\ell=1}^{\ell}$ строго отделяет K от $\{K_\ell\}_{\ell=1}^{\ell}$. Точка cl(K-Q) — оближайшая к f из точек множества cl(K-Q) — так как cl(K-Q) — для всех cl(K-Q) — Расстояние между точками f и f и f и f и f его f равно

 $\rho(f;q) = \sqrt{\langle f,-q,f-q \rangle} = \sqrt{\sum_{i=0}^{\ell} \langle f_i,-g,f_i-g \rangle}$ и достигает минимума при g=0 , следовательно, градиент тункции $\psi(g)=\rho^2(f,g)$ от $g\in R^{n^2}$ равен нулю при g=0. Это значит, что выполняется равенство $\sum_{i=0}^{\ell}f_i=0$, т.е, $f=-\sum_{i=0}^{\ell}f_i$. Для любого $y\in \mathcal{Cl}(K-Q)$ выполняется неравенство $\langle f,y-f\rangle\geqslant 0$, т.е. $\langle f,y\rangle\geqslant \langle f,f\rangle$. Если $\psi'\in K_i$ при всех $i=1,\ell$, то

 $I = (f_0, f_1, \dots, f_{i-1}, f_i + y^i, f_{i+1}, \dots, f_{\ell}) \in cl(K-Q),$

 $\langle \widetilde{f}, f \rangle = \langle f, f \rangle + \langle g', f_i \rangle \langle \langle f, f \rangle$, чего не может быть. Если $g' \in K_o$, то

 $\tilde{y} = (y, 0, 0, ..., 0) \in cl(K-Q),$ откуца

 $\langle f_0, y^{\circ} \rangle = \langle f, \tilde{y} \rangle \geq \langle f, f \rangle > 0$

для всякого y f f f , что и требовалось доказать. — СЛЕДСТВИЕ I. Если $K(x^i) = cl$ cone $\partial u_i(x^i)$, $i = \overline{f_i}n$, и $\bigcap K(x^i) = \{0\}$, то существует набор векторов $\{f_i\}_{i=1}^{n}$,для которого выполняются равенство $\sum_{i=1}^{n} f_i = 0$ и неравенства

 $\inf\{\langle f_i, g \rangle | g \in \partial u_i(x^i) \} > 0, \quad i \in N, \quad (I)$ т.е. субдиф ференциалы $\partial u_i(x^i)$ можно строго разделить набором гиперплоскостей, проходящих через начало координат.

В самом деле, применяя лемму 2 к набору конусов $K(x^i)$ $i \neq V$, и субдифференциалу ∂u (x^{V}) при каждом $V \in \mathcal{N}$ получим набор векторов $\{f_i\}_{i=1}^{n}$, строго отделяющий субдифференциал ∂u (x^{V}) от набора конусов $\{K(x^i)\}_{i\neq V}$. Остается положить $f_i = \sum_{v=1}^{n} f_i$ для каждого $i = \overline{f_i n}$. Конус $\bigcap K(x^i)$ обозначим через K(x) , так как в дальнейшем

изложении он упоминается постоянно.

СЛЕДСТВИЕ 2. П у с т ь \bar{g} (R^m и $<\bar{g}$, g>>0 для всякого $g\neq 0$ из K(x), тогда с у—ществует набор $\{f_i\}_{i=1}^n$ век торов f_i (R^m и число $\lambda > 0$ так и е, что $\sum_{i=1}^n f_i = \lambda g$ и выполняются неравенства (I).

Лействительно, полупространство $K_i = \{g \in R^m | <\bar{g}, g> < 0\}$

определяемое вектором \bar{g} , является выпуклым конусом. Следовательно, каждый субдифференциал $\partial \omega_{\nu}(x^{\nu})$, $\nu \in \mathcal{N}$ можно строго отделить от набора конусов $\{k, \{k(x^i)\}_{i=1}^{n}\}$ набором гиперплоскостей, определяемых векторами $\{f^i\}_{i=1}^{n}$. Набор векторов $\{f_i\}_{i=0}^n$, где $f_i = \sum_{v=1}^n f_i^v$, $i = \overline{o}, n$, удовлетворяет равенству $\sum_{i=0}^{\infty} f_i = 0$ и неравенствам (I). Для i=0 выполняется условие

inf $\{\langle f_o, g \rangle | g \in K_o \} > 0$,

что возможно только в том случае, если < f , g > > O для всех g из K , т.е. $\sum_{i=1}^{n} < f_i$, g > < O при $g \in K$. А последнее возможно только тогда, когда $\sum_{i=1}^{\infty} f_i = \lambda \bar{g}$ при некотором $\lambda \geqslant 0$. Случай $\lambda = 0$ соответствует условию K(x) =

 $=\{o\}$, т.е. следствию I. ЛЕМІМ З. П усть $x \in X$, причем $\partial u_i(x^i) \neq \emptyset$ для каждого $i \in N$. Тогда $x \in \Theta(\mathcal{E})$,

е с л и и т о л ь к о е с л и $K(x) \neq \{0\}$. ЛОКАЗАТЕЛЬСТВО. Пусть $x \in \Theta(\mathcal{E})$, если при этом $K(x) = \{0\}$, то субдифференциалы $\{\partial u_{i}(x^{i})\}_{i=1}^{n}$ можно строго разделить набором гиперплоскостей, проходящих через начало координат, т.е. существует набор векторов $\{f_i\}_{i=1}^n$, для которых выполняется равенство $\sum_{i=1}^{n} f_i = 0$ и неравенства (I). Положим $f_i(\mathcal{E}) = f_i + \mathcal{E} y^i$, где $y^i = \sum_{i=1}^{n} a^i/n - x^i$, а $\mathcal{E} \geq 0$ достаточно мало, чтобы выполнялось неравенство

 $\inf\{\langle f_i, g \rangle | g \in \partial u_i(x^i)\} > -\varepsilon u_i'(x_i^i, y^i), i \in \mathbb{N}.$ Тогда $f_i(\mathcal{E})$ \in int dom $u_i'(x^i; \cdot)$ и, следовательно,

 $u_i^*(x^i;f_i(\varepsilon))=\inf\{\langle g,f_i(\varepsilon)\rangle|g\in\partial u_i(x^i)\}>0$ дл. каждого $i\in N$, что противоречит условию $x\in\partial(\mathcal{E})$, ноenomy $K(x) \neq \{0\}$.

Пусть $\rho \in K(x)$ и $\|\rho\| = 1$, тогда для каждого $i \in N$ найдется $\lambda_i > 0$ такое, что $\lambda_i \rho \in \partial u_i(x^i)$. В самом деле, если $\rho \in K(x^i)$ для некоторого $i \in N$, то существует последовательность $\{\rho^i(k)\}_{k=1}^i$ векторов $\rho^i(k) \in \partial u_i(x^i)$, удовлетворяющая равенству удовлетворяющая равенству

 $\lim_{k\to\infty} \rho^i(k)/|\rho^i(k)|=\rho.$ Если эта последовательность ограничена, то $\lambda_i \rho \in \partial u_i(x^i)$ при некотором $\lambda_i > 0$, а если не ограничена, то ρ – рецессивное направление множества $\partial u_i(x')$. Совокупность рецессивных направлений сублифференциала $\partial u_{+}(x^{i})$ представляет

 $\inf\left\{ \langle g, \bar{x}^i - x^i \rangle | g \in \partial u_i(x^i) \right\} \geqslant u_i'(x^i; \bar{x}^i - x^i) > 0$ и, следовательно, $p, \bar{x}^i - x^i > 0$ для каждого $i \in N$. По тогда $\sum_{i=1}^{n} \langle p, \bar{x}^i - x^i \rangle > 0$, что противоречит равенству $\sum_{i=1}^{n} \bar{x}^i = \sum_{i=1}^{n} x^i$. Полученное противоречие завершает доказательство леммы.

ЗАМЕЧАНИЕ. ЕСЛИ $\rho \in K(x)$ и $\rho \neq 0$, то для каждого $i \in N$ найдется $\lambda_i \geq 0$ такое, что $\lambda_i \rho \in \partial u_i$ (x^i) .

§3. Вполне договорные и вальрассовские состояния в 7-репликах рынка

Напомним, что состояние $\bar{x} \in X$ принадлежит $W(\xi)$ тогда и только тогда, когда существует вектор цен $\bar{\rho} \in P$, удовлетворяющий условиям:

(a)
$$\langle \bar{\rho}, \bar{x}^i \rangle = \langle \bar{\rho}, \alpha^i \rangle$$
, i.e. N_*

(6) $\omega_i(x^i) = max\{\omega_i(x^i)/\langle \bar{\rho}, x^i \rangle \leqslant \langle \bar{\rho}, \alpha^i \rangle \}$, $i \in \mathbb{N}$. В настоящем параграфе исследуются условия совпадения множеств $\mathcal{D}(\mathcal{E}^z)$ и $\mathcal{W}(\mathcal{E}^z)$ при z > 1. Іля этой цели потребуются некоторые вспомогательные утверждения, доказываемые ниже.

JEMMA 4. ECJH $\bar{x} \in D(\hat{e})$ H $conv\left(\left\{\bar{x}^{i} - \alpha^{i}\right\}_{i=1}^{n} \cap int K^{+}(\bar{x}) = \emptyset,\right\}$

г д е $K^{\dagger}(\bar{x}) = \{y \in R^m | \langle y, g \rangle \ge 0 \quad \forall g \in K(\bar{x}) \}$, то $\bar{x} \in W(\mathcal{E})$. ДОКАЗАТЕЛЬСТВО. Конус $K(\bar{x})$ содержится в R^{\dagger}_{-} , а конус $K^{\dagger}(\bar{x})$ содержит $R^{\prime\prime\prime}_{-}$ и потому телесен. Его внутренность можно отделить от множества $conv(\{\bar{x}^i-\alpha^i\}_{i=1}^{\mathcal{A}})$ гиперплоскостью, проходящей через начало координат, т.е. найдется вектор $\bar{p} \in R^m$,

удовлетворяющий условиям $<\bar{\rho},g>>O$ для всех $g\in C$ $\in int$ $K^{\dagger}(\bar{x})$ и $<\bar{\rho},\bar{x}^{i}$ - $\alpha^{i}> <O$ для всех $i\in N$. Но тогда $\bar{\rho}\in K(\bar{x})$, так как $K(\bar{x})=K^{\dagger\dagger}(\bar{x})$. Согласно замечанию к лемме 3 предыдущего параграфа, для каждого $i\in N$ найдется множитель $\lambda_{i}>O$, при котором $\lambda_{i},\bar{\rho}\in\partial u_{i}(\bar{x}^{i})$. Но тогда для любого $x^{i}\in R^{+}_{+}$ справедлива оценка

 $\mathcal{U}_{i}(x^{i}) \leq \mathcal{U}_{i}(\bar{x}^{i}) + \lambda_{i} \leq \bar{\rho}, x^{i} - \bar{x}^{i} > .$ Если при этом $\langle \bar{\rho}, x^{i} \rangle \leq \langle \bar{\rho}, \bar{x}^{i} \rangle$, то $\mathcal{U}_{i}(x^{i}) \leq \mathcal{U}_{i}(\bar{x}^{i})$. Следовательно, для каждого i выполняется условие максимума полезности при бюджетном ограничении. Условия соблюдения стоимостного баланса $-\langle \bar{\rho}, \bar{x}^{i} \rangle = \langle \bar{\rho}, \alpha^{i} \rangle$ для каждого $i \in \mathbb{N}$ также выполнены ввиду равенства $\sum_{i=1}^{\infty} \bar{\alpha}^{i} = \sum_{i=1}^{\infty} \alpha^{i}$ и неравенств $\langle \bar{\rho}, \bar{x}^{i} - \alpha^{i} \rangle \leq 0$, $i \in \mathbb{N}$. Таким образом, $(\bar{\rho}, \bar{x})$ — конкурентное равновесие, т.е. $\bar{x} \in \mathbb{W}(\mathcal{E})$, что и требовалось доказать.

ЛЕММА 5. Е СЛИ x > 1 и $x \in D(\mathcal{E}^2)$, то

$$(x^{i}-\alpha^{i}) \notin int K^{+}(x), i \in N.$$

ЛОКАЗАТЕЛЬСТВО. Если $x\in\mathcal{D}(\varepsilon^z)$, то существует устойчивая система договоров $V=\{v_\xi\}_{\xi\in\mathcal{Z}}$, удовлетворяющая условию

$$x = \alpha + x(V)$$

Пусть $\mathcal{L} \in [0,1]$, S — коалиция, состоящая из всех торговцев за исключением $(\stackrel{i}{v},\stackrel{i}{i})$, где $(\stackrel{x}{x}^{i}-\stackrel{i}{a}^{i}) \in \operatorname{int} K(x)$, а

- разбиение системы договоров V. Коалиция s может разорвать договоры $\mathcal{L}V_{s}$ для всех $s \in \mathcal{L}$ и заключить новый договор $\mathcal{L}(s)$. В результате получится ковое распределение товаров $\{\widetilde{x}(v)\}_{r=1}^{\infty}$, для которого выполняется равенство

 $\sum_{\substack{(v,i)\in S\\ \text{СОЛИ ПОЛОЖИТЬ } f_o = x}} \tilde{x}^i(v) - \lambda \sum_{\substack{x}} x^i(v)(V) = \sum_{\substack{x}} x^i(v) + \lambda x^{i_o}(v)(V)$ ЕСЛИ ПОЛОЖИТЬ $f_o = x^{i_o}(v)(V)$, то согласно следствию 2 леммы 2 существует набор векторов $\{f_i, f_i, \dots, f_o\}$, удовлетворяющих равенству $\sum_{i=1}^{n} f_i = f_o$ и набору неравенств (I). Как и в до-

казательстве леммы 3, векторы f_i можно подправить, положив $f_i(\varepsilon) = f_i + \varepsilon \, y^i$. Тогда $\sum_{i=1}^n f_i(\varepsilon) = f_o$, а для каждого $i \in \mathbb{N}$ имеем $f_i(\varepsilon) \in int\ dom\ u_i'(x^i;\cdot)$ и

 $u_i'(x^i; f_i(\varepsilon)) = \inf\{\langle f_i(\varepsilon), g \rangle | g \in \partial u_i(x^i)\} > 0.$

Логовор $\mathcal{O}(\mathfrak{S})$ определим из условия

 $x^i(v_i)(v(s))=\lambda(f_i(e)+x^i-a^i), i=1,n; x^i(v)(v(s))=\lambda(x^i-a^i),(v,i)+s, v\neq v_i$ где $v_i\neq v_o$. При достаточно малых λ выполняются равенства

 $\mathcal{U}_{i}\left(\widetilde{x}^{i}(\mathcal{V})\right)=\mathcal{U}_{i}\left(x^{i}(\mathcal{V})\right),\ (\mathcal{V},i)\in\mathcal{S},\ \mathcal{V}\neq\mathcal{V}_{i},$ и неравенства

 $u_{i}(\tilde{x}^{i}(v_{i})) > u_{i}(x^{i}(v_{i})), \quad i = \overline{f_{i}\pi},$

т.е. система договоров V^{-} доминируема по коалиции $s \in \mathcal{O}$. Это противоречит первоначальному предположению об устойчивости V. Полученное противоречие завершает доказательство леммы.

ТЕОРЕМА І. Для рынкає с двумя торговцами множества $D(\mathcal{E}^z)$ и $\mathcal{W}(\mathcal{E}^z)$ совпадают при всех z > 1.

ДОКАЗАТЕЛЬСТВО. Если z > 1 и $x \in \mathcal{D}(\mathcal{E}^2)$, то $(x^2 - \alpha^2) \notin int \ K^{\dagger}(x)$ для i = 1, 2 в селу лемми 5. Но $x^2 - \alpha^2 - x^2$, поэтому прямая $\{\lambda(x^2 - \alpha^2)/\lambda \in \mathcal{R}\}$, содержащая точки $x^2 - \alpha^2$ и $x^2 - \alpha^2$, не имеет пересечений с множеством $int \ K^{\dagger}(x)$. Из утверждения лемми 4 следует, что $x \in W(\mathcal{E})$, т.е. $W(\mathcal{E}^2) = \mathcal{D}(\mathcal{E}^2)$ при z > 1. Теорема полностью доказана.

ТЕОРЕМА 2. Если для некоторого i, $\in \mathcal{N}$ функция ω_i дифференцируема на int \mathcal{R}_+^m и ω_i \mathcal{L}_i (α^{i_o}) \mathcal{L}_i совпадают при всех $\mathcal{D}(\mathcal{E}^t)$ и $\mathcal{W}(\mathcal{E}^t)$ совпадают при всех

ДОКАЗАТЕЛЬСТВО. ЕСЛИ $\{x(v)\}_{v}^{2}$ $\{D(E^{2}), \text{ то } x(v) = x \text{ при всех } v = 1, 2 \text{ для некоторого } x \in C(E)$, причем $x^{2} \in int R_{+}^{m}$. В самом деле, из условия $x \in C(E)$ имеем $u_{-}(x^{2}) > u_{-}(a^{2}) > u_{-}(a)$, а из непрерывности функции u_{i} на R_{+} имеем $u_{-}(x^{2}) > u_{-}(a^{2}) > u_{-}(a^{2})$ для некоторого $u_{-}(x^{2}) = u_{-}(a^{2})$. По условию теоремы $u_{-}^{2} (u_{-}(x^{2})) = u_{-}(a^{2})$. Субдифференциал $u_{-}^{2} (u_{-}(x^{2})) = u_{-}(x^{2})$ состоит из единственной точки $u_{-}^{2} (u_{-}(x^{2})) = u_{-}(x^{2})$, т.е. $u_{-}^{2} (u_{-}(x^{2})) = u_{-}(u_{-}(x^{2}))$ состоит из единственной точки $u_{-}^{2} (u_{-}(x^{2})) = u_{-}(u_{-}(x^{2}))$, т.е. $u_{-}^{2} (u_{-}(x^{2})) = u_{-}(u_{-}(x^{2}))$

5 выполняются условия лемы 4, поэтому $x \in W(\mathcal{E})$. Но тогда $\mathcal{D}(\mathcal{E}^2) = W(\mathcal{E}^2)$ при x > 1 , что и требовалось доказать.

Остается показать, что без дополнительных предположений относительно функций полезности или числа торговцев утверждение, аналогичное утверждениям теорем I и 2, неверно. Для этого понадобится еще одна небольшая лемма.

JEMMA 6. ECHE $x \in \theta(E)$ nint R_+^m H

 $q(s) = \sum_{i \in N \setminus S} (x^i - \alpha^i) \notin int K^+(\infty)$

для каждой коалиции $S \in \mathcal{G}$, то $x \in \mathcal{D}(\mathcal{E})$. ДОКАЗАТЕЛЬСТВО. Достаточно показать, что система договоров V , состоящая из одного договора V и удовлетворяющая условию $x = \alpha + x$ (V) , устойчива. Если V доминируема по некоторой коалиции S , то существует число $x \in V$ и договорой такие, что $x \in V$ и для каждого $x \in V$ выполняется неравенство $x \in V$ и для каждого $x \in V$ выполняется неравенство $x \in V$ и для каждого $x \in V$ выполняется неравенство $x \in V$ удовлетворяющий условию $x \in V$ ($x \in V$) , удовлетворяющий условию $x \in V$ ($x \in V$) $x \in V$ ($x \in V$) , удовлетворяющий условию $x \in V$ ($x \in V$) $x \in V$ ($x \in V$) , удовлетворяющий условию следует оценка

 $\sum_{i \in S} \langle \rho(s), \tilde{x}^i - x^i \rangle = \mathcal{L} \langle \rho(s), q(s) \rangle \leq 0.$

Если при этом u_i $(\tilde{x}^i) > u_i$ (x^i) для некоторого $i \in \mathbb{N}$, то $< \rho(s)$, $\tilde{x}^i - \tilde{x}^i >> 0$, поскольку $\lambda_o \rho(s) \in \partial u_i$ (x^i) при некотором $\lambda_o > 0$ и

 $\inf \{ \langle g, \hat{x}^{i_0} - x^{i_0} \rangle | g \in \partial u_{i_0}(x^{i_0}) \} \ge u_{i_0}'(x^{i_0}; \tilde{x}^{i_0} - x^{i_0}) > 0.$ Найдется $i_1 \in S$ такой, что $\langle p(s), \tilde{x}^{i_1} - x^{i_1} \rangle < 0$. Если $\lambda, p(s) \in \partial u_{i_0}(x^{i_0})$, то

 $\mathcal{U}_{i,j}(\tilde{x}^{i_j}) \leq \mathcal{U}_{i,j}(x^{i_j}) + \lambda, \leq p(s), \tilde{x}^{i_j} - x^{i_j} >$ и $\lambda, \geq 0$, следовательно, $\mathcal{U}_{i,j}(\tilde{x}^{i_j}) \leq \mathcal{U}_{i,j}(x^{i_j})$, что нротиворечит исходному предположению. Полученное противоречие заверняет доказательство лемии.

Рассмотрим двухиродунтовый ринок & с четирым торгонцами, жизимими одиналовые функции полезности $\omega_i = \omega_i$, где

· u (d; B) = min {d; B} + (2 \d B + d + B)/2

1.

и различные начальные наборы товаров. Общее количестно каждого товара в экономике положим равным двум условным единицам, причем для удобства примем условие $\alpha' + \alpha^2 = \alpha' + \alpha''$, т.е. $\alpha' + \alpha^2 = (1; 1)$ в $\alpha' + \alpha'' = (1; 1)$. В качестве начального распределения товаров возымем состояние рынка, определяемое парой векторов

$$\alpha' = (0; 1); \ \alpha'' = (1/2 - \lambda/2 - \epsilon; 1/2 + \lambda/2),$$

где $\lambda > 0$ и $\mathcal{E} > 0$ достаточно малы, так что выполняется неравенство $\lambda + \mathcal{E} < 1/2$. Функция $\sqrt{\omega}$ строго вогнута, а функция ω нет, но эти функции определяют один и тот же предпорядок на \mathcal{R}_+^2 . Поскольку все используемые здесь свойства рынка зависят не от самих функций полезности, а от порождаемых ими предпорядков, можно положить $\omega_i = \omega$ для каждого $i \in \mathcal{N}$. Полная производная функции ω в точке (ω, β) равна

$$grad \ u \ (\alpha; \beta) = \left(\frac{\sqrt{\beta/\alpha+1}}{2}; 1 + \frac{\sqrt{\lambda/\beta}+1}{2}\right),$$

$$ec.\pi x \ \lambda > \beta > 0 \ , \pi$$

$$grad \ u \ (\alpha; \beta) = \left(\frac{\sqrt{\beta/\alpha+1}}{2} + 1; \frac{\sqrt{\lambda/\beta}+1}{2}\right),$$

если $\beta > \alpha > O$. При $\alpha = \beta > O$ функция α не дефференцируема, а ее субдифференциял равен

 $\partial \omega (\alpha; \alpha) = \{(1+p; 2-p) | 0 \le p \le 1\}$, причем субдифференциал не зависит от выбора $\alpha > 0$. Конус

$$K = cl$$
 cone $\partial u(\lambda; \lambda) = cl$ cone $\partial \sqrt{u(\lambda; \lambda)}$

определяется предпорядком, порождаемым функциями \mathcal{L} и $\sqrt{\mathcal{L}}$, следовательно, также не зависят от $\mathcal{L} > \mathcal{O}$. Граница Парето $\theta(\mathcal{E})$ рынка \mathcal{E} состоит из распределений товаров $x = \{x^t\}_{i=1}^{\mathcal{L}}$, для которых выполняются равенства $x_i^t = x_i^t$, $i = 1, \mathcal{L}$, поэтому для $x \in \theta(\mathcal{E})$ л int \mathcal{R}_+^{mx} конуси $K(x^t)$ совпадают с K и K(x) = K

Рассмотрям состояния $\bar{x}=\{\bar{x}^i\}_{i=1}^{\ell}$, в $x=\{x^i\}_{i=1}^{\ell}$, где $\bar{x}_i^i=(\alpha_i^i+\alpha_i^o)/2$, а $x_i^i=/2$, j=1,2, для каждого $i=\overline{1,4}$. При любом f, $0\leqslant f\leqslant 1$, состояние x(f)=fx+(1-f) \bar{x} принадлежит границе Парето, причем только при f=0 оно является вальрасовским. Действительно, если f=0, то

 $x(q) = \overline{x}$, причем пара $(\overline{\rho}, \overline{x})$, где $\overline{\rho} = (/2; /2)$, является состоянием конкурентного равновесия, что легко проверяется непосредственно. Если 2 > 0 , то не существует вектора $\rho \in P$ такого, что $\langle \rho, x^i(q), \alpha^i \rangle = 0$ для каждого $i \in N$, следовательно, $x(q) \notin W(\mathcal{E})$. Остается убедиться, что при любом $z = \overline{f_i}$ найдется ρ такое, что $x(q) \in D(\mathcal{E}^i)$. Для этого достаточно проверить выполнение условий леммы 6 при произвольном z . Через l_i , $i = \overline{f_i}$, обозначим число торговцев вида (Y,i) в некоторой произвольной коалиции S и положим

$$q(s) = \sum_{i=1}^{4} (z - l_i)(x^i - \alpha^i); \ \bar{q}(s) = \sum_{i=1}^{4} (z - l_i)(\bar{x}^i - \alpha^i).$$

Тогда состоянию $x(\eta)$ соответствует вектор

$$q^{q}(s) = \sum_{i=1}^{q} (z - l_i)(x^{i}(q) - \alpha^{i}) = pq(s) + (1+p)\overline{q}(s).$$

Подставляя в эту формулу значения x^{i} – α^{i} и \bar{x}^{i} – α^{i} , получим

$$q^{\mathcal{I}(s)} = \frac{\ell_2 - \ell_1}{2} (1; -1) + \frac{\ell_4 - \ell_3}{2} (\lambda + \varepsilon + \varepsilon \rho; -\lambda - \varepsilon + \varepsilon \rho).$$

Воли $q^{\ell}(s) \in int K^+$, то для всех $p \in P \cap K$ должно выполняться неравенство $< q^{\ell}(s), p > > 0$, в частности для $p = (\frac{l}{k}; \frac{l}{k})$:

$$< q^{l}(s), p> = \frac{l_4-l_3}{2}$$
 р > 0 , откуда следует, что $l_4-l_3>0$. Аналогично, для $p=(\frac{1}{3};\frac{2}{3})$

$$q^{l(s)}, p > = \frac{l_1 - l_2}{6} + \frac{l_3 - l_4}{6} (\lambda_+ \varepsilon - 3\eta \varepsilon) > 0$$
 where $p = (\frac{2}{3}; \frac{1}{3})$

$$< q^{l(s)}, p> = \frac{l_2-l_1}{6} + \frac{l_4-l_2}{6} (\lambda + \varepsilon + 3\eta \varepsilon) > 0.$$

Объединяя эти неравенства, получим оценку

$$\frac{l_4 - l_3}{2} ge > \frac{l_2 - l_1}{6} + \frac{l_4 - l_3}{6} (\lambda + \varepsilon) > - \frac{l_4 - l_3}{2} ge,$$

которую с учетом неравенства ℓ_{q} - ℓ_{3} > \mathcal{O} можно записать в виде

$$\label{eq:energy_energy} \begin{split} \eta \mathcal{E} > \frac{l_z - l_f}{3(l_q - l_g)} + \frac{\lambda + \mathcal{E}}{3} > - \eta \mathcal{E} \;. \end{split}$$

Если $\lambda + \mathcal{E}$ — вррациональное число, то в силу целочисленности коэффициентов ℓ_i , $\ell = 7,4$, найдется ρ , при котором эта оценка не выполняется. Следовательно, при любом 2 = 7,000 найдется $\rho > 0$ такое, что состояние $x(\rho)$ удовлетворяет условию лемын 6. Последнее означает несовпадение множеств $D(\mathcal{E})$ и $W(\mathcal{E})$, поскольку $x(\rho) \in D(\mathcal{E})$ и $x(\rho) \notin W(\mathcal{E})$.

JIMTEPATYPA

- І. РОЗЕНМОЛЛЕР И. Кооперативные вгры и рынки. М.: Мир. 1974.
- 2. КОЗЫРЕВ А.Н. Устойчивые системы договоров в экономике чистого обмена. Оптимизация, 1982, вып.29(46), с.66-78.
- 3. КОЗЫРЕВ А.Н. Договорные и вполне договорные состояния в абстрактной экономике. Новосибирск, 1982. 44 с. (Препринт/ИМ СО АН СССР:7).
- 4. ДУБОНИЦКИЙ А.Я., МИЛЮТИН А.А. Задачи на экстремум при наличии ограничений. Журн. вычислит. математики и мат. физи-ки, 1965, т.5, №3, с.395—453.
- 5. ПШЕНИЧНЫЙ Б.Н.Необходимые условия экстремума. M.: Наука, 1969.
- 6. РОКАФЕЛЛАР Р. Выпуклый анализ. М.: Мир, 1973.
- 7. ДЕМЬЯНОВ В.Ф., Васильев Л.В.Недифференцируемая оптимизация. М.: Наука, 1981.
- 8. МАКАРОВ В.Л. О понятик договора в абстрактной экономике. Оптимивация, 1980, вып. 24(41), с.5-17.

Поступила в ред. изд. отдел 06.06.1982 г.