Выпуклый анализ

УДК 513.88

О РАЗРЕШИМОСТИ ЭКСТРЕМАЛЬНЫХ ЗАДАЧ, ПОРОЖЛЕННЫХ ПУЧКАМИ ОПЕРАТОРОВ

Ю.Ш. Абрамов

В работе [] для одного класса оптимизационных задач, порожденных спектральными задачами, построена теория двойственности. Там же даны общие условия, при которых прямая и двойственная задачи связаны соотношением двойственности. Одно из них есть условие существования оптимальных векторов у двойственной запачи^{ж)}. Этому вопросу и посвящена настоящая заметка. Здесь показано, что разрешимость двойственной задачи тесно связана с некоторым "алгебранческим" свойством набора симметричных операторов $L_1(\alpha_1), \ldots, L_k(\alpha_k)$, построенного по ограничениям прямой задачи (Λ -соеместность задачи). Детализация этого свойства, с одной стороны, приводит к условиям типа условия Слейтера, с другой стороны - к условиям разрешимости системы уравнений $tc(L_i(\alpha_i)\beta)=0$, i=1,...,k. В некоторых случаях возможно непосредственно по ограничения: прямой задачи делать вывод о разрешимости двойственной задачи. Так, например, если операторы $L_{L}(\alpha_{L})$, $L=1,\ldots, R$ имеют нулевой след, то у двойственной задачи существует оптимальный вектор. Иногда удается получить и критерии разрешимости двойственной задачи. Здесь на примере задачи с одним ограничением - равенством - продемонстрирована связь этого вопроса с геометрией числовых областей набора операторов, связанного с задачей. Указана также связь изу-

ж) При этих же условиях (см. [I], теорема 7) из разрешимости двойственной задачи следует разрешимость прямой задачи.

чаемого вопроса с вариационными свойствами спектра операторов.

I. Введем сначала некоторые необходимые определения и обозначения (подробнее см. [I-4]). Пусть \mathcal{H} – гильбертово пространство над полем \mathcal{K} –вещественных или комплексных чисел со скалярным произведением (\cdot,\cdot) и нормой $\|\cdot\|$, $\mathcal{H}_o = \mathcal{H} \setminus \{o\}$, \mathcal{S} – множество всех ограниченных симметричных операторов в \mathcal{H} , (c,d) – интервал вещественной оси \mathcal{R} . Запись A>0 означает, что $A\in\mathcal{S}$ и $(A\propto,\infty)>0$, $x\neq 0$.

Непрерывный функционал $ho:\mathcal{H}_{lackbox{--}}(c,d)$ называется функционалом

Релея (ф.Р.), если он удовлетворяет следующим условиям:

а) $\rho(tx) = \rho(x)$, $t \in K \setminus \{0\}$, $x \in H_0$: существует непрерывно дий реренцируемая оператор-йункция $L:(c,d) \longrightarrow S$ такая, что $\beta(L(\rho(x))x,x) = 0$;

 $f')(L'(\rho(x))x,x)>0,x\in H_0.$

Пучок операторов $L = L(\alpha)$, связанный с ρ согласно β - γ), будем называть производящим пучком для ρ , а функционал ρ соответственно будем называть ϕ .Р. пучка L. Пара $\mathcal{R} = \{L, \rho\}$ называется системой Релея (с.Р.) на $(c, \mathcal{A}) \times \mathcal{H}$.

В частности, функционал $(A \propto, \infty)/(B \propto, \infty)$ при B > 0 есть ϕ . Р., а линейный пучок $L(\alpha) = \alpha B - A$ является его порождающим. Другие примеры ϕ . Р. можно найти в [I-4].

Рассмотрим следующую (прямую) экстремальную задачу:

$$\rho(x) \longrightarrow \sup_{x \in V} x \in V,$$
 (I)

где множество допустимых векторов V имеет вид

 $V = \{x \in H_o: \rho_i(x) \le \alpha_i, i = 1,...,m, \rho_i(x) = \alpha_i, i = m+1,...,k\}.$ Одесь $\rho, \rho_i - \phi.P.$, $\alpha_i - \text{постоянные}, m$ и k - целые числа, $0 \le m \le k$.

Построим, следуя [I], для задачи (I) двойственную задачу. Пусть L и L_i — производящие пучки для 5.Р. ρ и ρ_i , заданные соответственно на (c,d) и (c_i,d_i) , i=1,..., k. Считаем (см. [I]), что $\mathcal{R} = \{L,\rho\}$ — простая на [a,b] с.Р. и что $d_i \in (C_i,d_i)$, i=1,..., k.

 $\alpha_i \in (C_i, \alpha_i)$, $i=1,\dots,k$. для фиксированного $\mathcal{A} = (\mathcal{A}_1,\dots,\mathcal{A}_k) \in \mathcal{R}^k$ введем пучок опе-

раторов $L(\alpha, \lambda) = \hat{L}(\alpha) - \sum_{i=1}^{k} \lambda_i L_i(\alpha_i), \alpha \in R,$

гле $\widehat{\mathcal{L}}$ - каноническое расширение пучка \mathcal{L} на \mathcal{R} . Для каждого

 $x \neq 0$ функция $(L(\alpha, \lambda)x, x)$ имеет единственный вещественный корень $\rho(x, \lambda)$. Таким образом, вектор $\lambda \in \mathbb{R}^k$ порождает с.Р. $\mathcal{R}_{\lambda} = \{L(\cdot, \lambda), \rho(\cdot, \lambda)\}$ на $\mathbb{R} \times \mathcal{H}$.

Двойственная функция $q(\lambda)$ вводится как наибольшая точка спектра с.Р. $\mathcal{R}_{\mathcal{X}}$. Двойственной к задаче (I) называется задаче

$$q(\lambda) \longrightarrow inf, \lambda \in \Lambda,$$
 (11)

где множество допустимых векторов Λ имеет вид

$$\Lambda = \Lambda^{mk} = \{ \lambda \in \mathbb{R}^k : \lambda_i \geq 0, i = 1, ..., m \}.$$

2. Скажем, что набор $\{A_1, \ldots, A_k\}$ симметричных операторов в H является Λ -соеместным, если для каждого $\mathcal{A} \in \Lambda \setminus \{o\}$ существует $\mathcal{X} \in H$ такой, что

 $A_1(A_1x,x)+\cdots+A_k(A_kx,x)>0.$ (1)

Задачу (1) назовем \bigwedge -совместной, если набор операторов $\{L_1(\alpha_1), \ldots, L_k(\alpha_k)\}$ является \bigwedge -совместным. ТРОРЕМА І. Если прямая задача я

ТБОРЕМА I. Если прямая задача является ∕ - совместной, то двойственная задача имеет решение.

ЛОКАЗАТЕЛЬСТВО. Обозначим через $\tau[\mathcal{A}]$ верхнюю грань значений квадратичной формы операторов $\mathcal{A} \in \mathcal{S}$ на единичной сфере пространства \mathcal{H} . Для вектора $\mathcal{A} \in \mathcal{R}^k$ положим

$$\tau(\lambda) = \tau[\lambda_1 L_1(\alpha_1) + \cdots + \lambda_k L_k(\alpha_k)].$$

По условию теоремы функция $7 = 2(\lambda)$ строго положительна на $\Lambda \setminus \{0\}$ и, кроме того, она непрерывна на R^* . Поэтому существует вектор $\theta \subset \Lambda$ единичной длины $(\|\theta\|_{\mathcal{E}} = 1)$, доставляющей ей минимум на множестве $\Lambda \cap \{\lambda : \|\lambda\|_{\mathcal{E}} = 1\}$, причем $2(\theta) > 0$. В силу однородности функции $2(\theta) = 1$

$$\tau(\lambda) \ge ||\lambda||_{\mathcal{K}} \tau(\theta), \lambda \in \Lambda.$$
 (2)

чиксируем $\mathcal{A} \in \Lambda$ и выберем последовательность $\{x_n\}$ такую, что $\|x_n\| = 1, n = 1, 2, \dots$ и

 $\sum_{i=1}^{K} \mathcal{X}_i(L_i(\alpha_i)x_n, x_n) - \mathcal{I}(\mathcal{U}). \quad (5)$

Поскольку $Q(\mathcal{X})$ есть верхняя грань $P(x,\mathcal{X})$ по всем $x \neq 0$ (теорема I из [I]), то отсюда нетрудно вывести, что оператор $L(Q(\mathcal{X}),\mathcal{X})$ неотрицателен. В частности,

$$(L(Q(\lambda),\lambda)x_n,x_n)=$$

$$= (\hat{L}(Q(\lambda))x_n, x_n) - \sum_{i=1}^k \lambda_i (L_i(\alpha_i)x_n, x_n) \ge 0.$$

Поэтому для любого н

$$r[L(q(\lambda))] \geq \sum_{i=1}^{k} \lambda_i(L_i(a_i)x_n, x_n).$$

Из (3) следует, что $\tau[\hat{L}(q(\lambda))] \ge \tau(\lambda)$. Отсида и из (2) получим, что для любого $\hat{X} \in \Lambda$ справедливо неравенство

$$\|\lambda\|_{k} \leq r(\theta)^{-1} r[\hat{L}(2(\lambda))].$$
 (4)

Обозначим через q^* нижнию грань функции q на множестве Λ . Пусть $\{\mathcal{X}^n\}_{\subset} \Lambda$, $\{\mathcal{Z}^n\}_{\longrightarrow} Q^*$. В силу неравенства (4) и непрерывности функции из его правой части (заметим, что функция q непрерывна [I]), последовательность $\{\mathcal{Z}^n\}$ ограничена. Теперь существование у задачи (II) оптимального вектора следует из непрерывности функции q.

Ниже считаем, что правая часть ℓ -го ограничения задачи (I), т.е. \mathcal{A}_{ℓ} , принадлежит множеству единственности с.Р. \mathcal{R}_{ℓ} , ℓ =1,..., k (см. [I]).

СЛЕДСТВИЕ I. Допустим, что m = 1c и выполнено следующее условие:

$$\exists x_o: P_i(x_o) < \alpha_i, i=1,..., \ell.$$

Тогда двойственная задача имеет решение.

ДОКАЗАТЕЛЬСТВО. Используя некоторое расширение леммы Роджерса [4], можно доказать, что $(L_i(\alpha_i)x_o,x_o)>0, i=1,...,\ell$ Отсюда, очевидно, следует, что задача (I) $/^{kk}$ —совместна.

ЗАМЕЧАНИЕ І. Допустим теперь, что задача (І) содержит только ограничения-равенства, т.е. m = 0. В этом случае $\Lambda = \Lambda^{o\kappa} = R^{\kappa}$. Ясно, что задача (І) R^{κ} -совместна тогда и только тогда, когда набор операторов $\{L_{I}(\alpha_{I}), \ldots, L_{L}(\alpha_{L})\}$ является индефинитным, т.е. для каждого $\Lambda \in R^{\kappa}\{o\}$ оператор $\Lambda_{I}L_{I}(\alpha_{I})+\cdots+\Lambda_{L}L_{L}(\alpha_{L})$ индефинитен (его квадратичная форма меняет знак). Используя результат Дини о характеристике индефинитного набора операторов [5] (см. также обзор [6]), из теоремы І получим следующий результат.

СЛЕДСТЕМЕ 2. Допустим, что m=0 и пространство H конечномерно. Если существует дефинитный опе-

ратор
$$\mathcal{B} \in \mathcal{S}$$
 такой, что

$$tr(L_i(\alpha_i)B) = 0$$
, $i = 1, ..., k$,

то двойственная задача имеет решение.

ЗАМЕЧАНИЕ 2. Отметим один важный частный случай этого следствия: если

то двойственная задача разрешима. Таким образом, в некоторых случаях по ограничениям прямой задачи непосредственно можно судить о разрешимости двойственной задачи. Кроме предыдущих двух результатов, можно привести и другие достаточные условия

3. В предыдущем пункте приведены достаточные условия разрешимости задачи (П). Эти условия связаны лишь с ограничениями
задачи (I) и поэтому они универсальны в том смысле, что они
обеспечивают разрешимость двойственной задачи при любом целевом ф.Р. прямой задачи. Поэтому, конечно, они не являются необходимыми. В некоторых случаях, однако, удается получить и
критерии разрешимости двойственной задачи. Сдесь мы рассмотрим в этом направлении лишь один результат, далеко не исчерпывающий все случаи.

Пусть A и $B \in S$. Обозначим через W(A,B) числовую

область вектора операторов $\{A, B\}$:

$$W(A, B) = \{((Ax, x), (Bx, x), ||x|| = 1\}.$$

Хорошо известно, что W(A,B) – выпуклое множество, за исключением единственного случая, когда K=R и сіт H=2 (теорема Тёплица – Хаусдорфа). В последнем случае числовая область имеет выпуклую границу.

МижокоП

$$R_{\pm}^{2} = \{ u = (u_{0}, u_{4}) : u_{1} \geq 0 \}.$$

В этом пункте считаем, что пространство H конечномерно и задача (I) имеет вид

$$(Ax,x)/(x,x) \rightarrow \sup_{x \in V}, \quad (5)$$

где

$$V = \{x \in H_0 : \rho_1(x) = \alpha_1\}. \tag{6}$$

В этом случае пучок \bot линеен: $\bot(\alpha) = \alpha I - A$.

ЛЕММА І. Следующие условия эквивалентны:

I) $\lim_{\lambda \to \pm \infty} g(\lambda) = +\infty$;

2) оператор Ц₄ («4) — индефинитен;

3) W(A, L;(d,)) n R= + p.

ДОКАЗАТЕЛЬСТВО. 2) \Rightarrow I). Пусть $(L_1(\alpha_1)x_+, x_+) > 0$, $(L_1(\alpha_1)x_-, x_-) < 0$. Можно считать векторы x_\pm единичными. Для задачи (5) функция $\rho(x,\lambda)$ имеет вид.

Еля задачи (5) функция $P(x,\lambda)$ имеет вид. $P(x,\lambda) = P(x) + \lambda \frac{(L_1(x_1)x,x)}{(x,x)}, \quad (7)$ P(x) = (Ax,x)/(x,x).

Пусть $\mathcal{A} > 0$, $\mathcal{A} \longrightarrow \infty$. Теперь I) следует из соотношения

$$Q(\pm \lambda) \ge \rho(x_{\pm}, \pm \lambda) = \rho(x_{\pm}) \pm \lambda(L, (\alpha_{\star})x_{\pm}, x_{\pm}),$$

первая часть которого вытекает из вариационного описания ϕ ункции Q [I].

 $1)\Rightarrow 2)$. Если $L_1(\alpha_1)\leq 0$, то $\rho(x,\lambda)\leq \rho(x)$ для $\lambda>0$. Переходя к верхней грани по x в этом неравенстве и пользуясь вновь вариационной характеристикой для $Q(\lambda)$, получим ограниченность сверху функции при $\lambda>0$. Аналогично исключается случай $L_1(\alpha_1)\geq 0$. Эквивалентность условий 2) и 3) оченидна.

Обозначим через Y = Y(V) оптимальное значение задачи (I). ЛЕММА 2. Следующие условия эквивалентны:

I) $\exists \lambda^{\circ} \in R : Q(\lambda) = Q(\lambda^{\circ}), \lambda > \lambda^{\circ};$

2) $L_1(d_1) \leq 0$, $\pi p \pi q e M <math>\exists t \in R: L(r) + t L_1(\alpha_1) \geq 0$;

3) $W(A, L_1(\alpha_1)) \cap R_+^2 = \emptyset$, причем множество $W(A, L_1(\alpha_1))$ имеет вещественную угловую точку.

ДОКАЗАТЕЛЬСТВО. 2) \Longrightarrow 3). Из условия 2) легко следует, что $W(A, L(\alpha_1))$ принадлежит множеству

$$\{u: u_1 \leq 0\} \cap \{u: u_0 - tu_1 \leq r\}.$$

Пусть \mathcal{X}_{o} — оптимальный вектор прямой задачи, который существует, так как $\dim H < \infty$. В силу свойства \mathscr{A}) ϕ .Р. можно считать, что $\|x_{o}\| = 1$. Тогда $\rho(x_{o}) = f$ и из леммы Род-

жерса $(L_1(\alpha_1)x_0, x_0) = Y$. Поэтому (Y, 0) является угловой точкой множества $W(A, L_1(\alpha_1))$. Импликация $3) \Rightarrow 2$) проверяется аналогично.

 $I)\Rightarrow 2)$. Если бы существовал $\mathcal X$ такой, что $(L_{i}(\alpha_{i})\mathcal X,\mathcal X)>0$, то, как и при доказательстве леммы I, мы получили бы противоречие с I). Поэтому $L_{i}(\alpha_{i})\leq 0$. Пусть вновь $\mathcal X_{0}$ — оптимальный вектор задачи (I). Можно показать, что при условиях п.3 задачи (I)—(П) находятся в двойственности:

$$\max_{\mathbf{y}} \rho(\mathbf{x}) = \inf_{\mathbf{x}} q(\mathbf{\lambda}). \tag{8}$$

В условиях этого пункта функция q выпуклая. Отсида на основании (8) заключаем, что $r=q(x^0)$. Поскольку $\rho(x,x^0) \le r$ для всех $x \ne 0$, то из (7) $L(r) - J^0 L_1(d_1) \ge 0$. Таким образом, выполнено 2) с $t=-\lambda$.

2) \Rightarrow I). Положим $\tilde{\mathcal{A}}=-t$, и пусть $\mathcal{A}>\mathcal{A}^{\circ}$; тогда для

BCEX $x \neq 0$

$$\rho(x) \leq r + t \left(L_1(d_1)x, x \right) / (x, x).$$

Ποэτοму так как $L_1(\alpha_1) \le 0$ π $\lambda > \lambda^\circ$, το $\rho(x, \lambda) = \rho(x) + \lambda (L_1(\alpha_1)x, x) / (x, x) \le 0$ $\leq \rho(x) + \lambda^\circ (L_1(\alpha_1)x, x) / (x, x) \le 0$.

Отсюда $q(A) \leq p$ для $A > \mathcal{X}^{\circ}$. Но в силу неравенства деойственности для всех \mathcal{X} выполнено противоположное неравенство. Отсюда и следует I).

ЗАМЕЧАНИЕ 3. Подобный же результат справедлив, очевидно, когда в условиях 1)-3) соответственно $\mathcal{A} < \mathcal{A}^0$, $\mathcal{L}_1(\mathcal{A}_1) \ge 0$ и $\mathcal{W}(\mathcal{A}, \mathcal{L}_1(\mathcal{A}_1)) \cap \mathcal{R}^2 \ne 0$.

Из предыдущих результатов, а также из выпуклости функции задачи (5) следует

______ ТЕОРЕМА 2. Для задачи (5) следую -щие условия I) - 3) эквивалентны.

- I) Двойственная задача имеет решение.
 - 2) Выполнено одно из условий:
- 2_a) оператор $L_1(d_1)$ не является индефинитным, но существует вещественное число t такое, что L_4) + $tL_1(d_1) \geqslant 0$.

3) Выполнено одно из условий: ${}^{3}_{a}$) $W(A, L_{1}(\alpha_{1})) \land R^{2}_{+} \neq \emptyset$;

 3_6) условие 3_a) не выполнено, но $W(A, L_1(\alpha_4))$ имеет вещественную угловую точку.

Рассмотрим еще более частную ситуацию, чем в п.3. Вновы для простоты предположим, что пространство \mathcal{H} конечномерно. Пусть \mathcal{E} - подпространство \mathcal{H} и \mathcal{P} - проектор (ортогональный) на него. Пусть, далее, в задаче (5) $\mathcal{P}_1(x) = (\mathcal{P}_x, x) / / (x, x)$ и $\alpha_1 = 0$. Очевидно, что в этом случае задача (5) примет следующую классическую форму:

$$(Ax,x)/(x,x) \longrightarrow \sup, \qquad (9)$$

$$Px = 0, x \neq 0.$$

Поскольку здесь $L_1(\alpha_1) = P \le 0$, то из предыдущей теоремы вытекает следующий результат.

СЛЕДСТВИЕ 3. Для задачи (9) следую щие условия эквивалентны:

- I) двойственная задача имеет решение;
- 2) существует вещественное число t такое, что $L(\sigma)-tP\geq 0$;
- 3) числовая область $W(A, \tilde{P})$ имеет вещественную угловую точку.

СЛЕДСТВИЕ 4. Если задача, двойственная к задаче (9), имеет рещение, то оптимальное значение у
прямой задачи является собственным значением оператора А, причем всякий оптимальный вектор
задачи (9) есть собственный вектор оператора А, соответствующий собственному значению у.

ДОКАЗАТЕЛЬСТВО. Пусть x_o – оптимальный вектор задачи (9). Тогда $Px_o = 0$ и $(L(r)x_o, x_o) = 0$. Поэтому для любо-го t

 $(L(r)x_{o}, x_{o}) - t(r)x_{o}, x_{o}) = 0.$ (10)

В силу условия 2) и следствия 3 оператор $L(r)-tP \ge 0$ для некоторого $t \in R$ Теперь из (IG) следует, что

 $L(r)x_o - tPx_o = 0$. Поскольку $Px_o = 0$, то $fx_o - Ax_o = 0$. Пусть $\theta_1 \ge \theta_2 \ge \dots \ge \theta_N$ — собственные значения оператора A (N — размерность H) и x_1, x_2, \dots, x_N — ортонормиро—ванная система соответствующих им собственных векторов.

Саметим, что если dim E=n-1, то согласно неравенству Вейля

 $\gamma(E) \ge \theta_n$ (II)

СЛЕДСТВИЕ 5. Если E -линейная обо-лочка $x_1, ..., x_{n-1}$, то задача, двой-ственная к задаче (9), имеет решение.

ДОКАЗАТЕЛЬСТВО. Обозначим через Q проектор на E^{\perp} . Имеем (L(r)x,x)=(L(r)Px,Px)+2Re(L(r)Px,Qx)+

$$+(L(r)Qx,Qx).$$
 (12)

Поскольку операторы Pи Q коммутируют с L(r) и PQ = 0, то второе слагаемое в правой части (12) равно нулю. Поскольку $rac{r}{r}$ – оптимальное значение задачи (9), то $(L(r)Qx,Qx) \ge 0$. Таким образом,

$$(L(r)x,x) \ge (L(r)Px,Px) = r(Px,Px) - (APx,Px) \ge (r(Px,Px) - \theta_1(Px,Px)).$$

Поскольку $\rho^2 = \rho$, то выполнено условие 2) следствия 3, где $t = r - \theta_1$. Поэтому двойственная задача имеет решение.

ЗАМЕЧАНИЕ 4. Из предыдущих двух следствий видно, что если пространство E порождено первыми n-1 собственными векторами оператора A, то (II) равенство. Это есть ни что иное как вариационный принцип Релея. На этом пути могут быть доказаны вариационные принципы для собственных значений систем Релея (ср. с [2-4]). Отметим также, что результаты последних двух пунктов имеют свои естественные аналоги и в бесконечномерной ситуации.

ЛИТЕРАТУРА

- I. АБРАМОВ Ю.Ш. Двойственность в экстремальных задачах, порожденных спектральными задачами для пучков операторов. — Локл. АН СССР. 1980. т.255. № 4. с.777—780.
- 2. АБРАМОВ Ю.Ш. К теории нелинейных задач на собственные зна-

- чения. Докл. АН СССР, 1973, т.212, № 1, с. 11-14.
- 3. АБРАМОВ Ю.Ш. Варжащионные свойства собственных значений некоторых задач, нелинейных относительно параметра. Изв. АН АрмССР, 1974, т.II, № I, с.23-39.
- 4. ROGERS E.H. A minimax theory for overdamped systems.-Arch. Rat. Mech. Anal., 1964, v.16, p.89-96.
- DINES L.L. On linear combinations of quadratic forms.— Bull. Amer. Math. Soc., 1943, v.49, p.38c-393.
- 6. UHLIG F. A recurring theorem about pair of quidratic forms and extensions: a survey.— Linear Algebra and its Appls., 1979, v.25, p.219-237.

Поступила в ред.-изд.отдел 27.01.1981 г.