УДК 330.115,382.81/82

модель экономического равновесия, учитыванная нововведения

В.Л. Макаров

В настоящей работе рассматривается довольно универсальный способ учета изменений в производстве, связанных с техническим прогрессом. На базе этого способа строится модель экономического равновесия типа модели Эрроу-Дебре. В определении понятия состояния равновесия для исследуемой модели с нововведениями имеется существенная отличительная черта по сравнению с классическим понятием равновесия, заключающаяся в необходимости оценки самого факта создания нововведений с учетом масштаба их внедения. Доказывается существование такого модифицированного состояния равновесия, и изучаются основные его свойства. В заключение обсуждаются некоторые экономические следствия, внтекаю — щие из полученных математических результатов.

§ I. Предлагаемая форма описания нововведений

Отличие рассматриваемой в работе модели от классической модели экономического равновесия Эрроу-Дебре состоит, в частности, в том, что производственные возможности производителей задаются более сложным образом.

Пусть матрицы Φ и A задают набор существующих (действующих, имеющихся) производственных способов производителя. Пара строк матриц Φ и A с одинаковым номером представляет собой производственный способ, в котором элементы матрицы Φ характеризуют затраты или выпуск (в зависимости от знака) внутрен-

них для данного производителя факторов (продуктов, ресурсов), а элементы матрици A — затраты или выпуск продуктов, ресурсов, обых для всей системы.

Набор нововведений, которым располагает данный производитель, задается с номощью матриц B, Φ , A и S. Здесь каждая строка матрицы B соответствует отдельному нововведению и показывает затраты всех видов факторов (докальных и общих), необходимых для осуществления (реализации) данного нововведения. Таким образом, число столоцов в этой матрице равно суммарному числу столоцов матриц Φ и A, что то же самое). Каждой строке матрицы B, т.е. каждому нововведению, соответствует одна или несколько строк матриц Φ и A. Эти пары строк представляют собой повые производственные способы, появляющиеся в результате осуществления данного нововведения. Матрица S имеет вид

 $S = \begin{pmatrix} i & & \\ i & & \\ & i & \\ & & i & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix}.$

Число её столоцов равно числу нововведений, а число строк равно числу новых способов; единицы в каждом столоце указывают, какие новые способы связаны с соответствующим нововведением.

Таким образом, нововведение характеризуется вектором затрат на его реализацию и набором способов, появляющихся в результате его осуществления. В соответствии с экономическим смыслом предполагается, что $\mathcal{B} \geq \mathcal{O}$. Кроме того, производитель располагает вектором ресурсов \mathcal{R} размерности, равной числу столоцов матрицы \mathcal{B} .

В дальнейшем будем называть множеством производственных возможностей данното производителя следующее множество:

$$Y = \{ y \in \mathbb{R}^{6} \mid y = g\widetilde{A} + hA + r^{A}, g\widetilde{\Phi} + h\Phi + r^{\Phi} > 0, \\ -8B + \widetilde{\tau} > 0, r + \widetilde{\tau} = \mathbb{R}, (gS)_{\kappa} > 0 \Longrightarrow \delta_{\kappa} = 1, \\ \delta_{\kappa} = 0 \text{ или } 1 \text{ для всех } \kappa; (z, \widetilde{z}, g, h) > 0 \}.$$
(I.I)

Здесь ℓ — число продуктов, общих для всей системи; ϱ —век — тор интенсивностей (объемов) применения новых способов; ℓ — вектор интенсивностей применения старых способов; ϱ — вектор ресурсов, затраченных в производстве: ℓ — вектор ресур-

сов, направлених на реализацию нововведений; Z^{Λ} и Z^{Φ} – части вектора Z, соответствующие столоцам матриц A и Φ ; $(yS)_{\kappa}$ — κ — я компонента вектора gS; C — булев вектор, где $O_{\kappa}=1$ показывает, что при построении данного вектора g K —е нововведение реализуется, а $O_{\kappa}=0$ означает, что K —е нововведение не реализуется.

Определим еще для фиксированного булева вектора ${\mathcal S}$ множест-

Y(8)=
$$\{y \in R^{l} | y = g\widetilde{A} + hA + (R - \delta B)^{A}, g\widetilde{\Phi} + h\Phi + (R - \delta B)^{S} = 0, (g,h) > 0\}$$
, (I.2)

THE $(R - \delta B)^{A}$ - OCOSHAYEHUE THE HORDERTOPA, COCTABREHHOTO HS

где $(R-\delta B)^A$ -обозначение для подвектора, составленного из компонент вектора $R-\delta B$, относящихся к общим продуктам (столоцам матрицы A), $(R-\delta B)^A$ - аналогичное обозначение. Определение $Y(\delta)$ имеет смысл для всех булевых векторов δ , удовлетворяющих неравенству $\delta B \leq R$. В дальнейшем δ иногда называется планом реализаций, а $\Delta = \{\delta \in R^N_+ \mid \delta B \leq R\}$ — множеством допустимых планов. По определению, $Y(\delta)$ является выпуклым многогранным множеством. Из экономических соображений дополнительно предполагается, что $Y(\delta)$ ограничено для любого допустимого δ . Нетрудно видеть, что $Y=U Y(\delta)$, где тео ретико-множественное объединение берется по всем допустимым планам нововведений.

Заметим, что для большинства дальнейших результатов многогранность множеств $Y(\mathcal{S})$ не требуется, достаточно, чтобы они были выпуклыми компактами. Это естественное обобщение имеет и содержательный смысл, состоящий в том, что одно нововведение производит целый конус новых производственных способов. Обозначим через $Z^{(\kappa)} \subseteq \mathcal{R}^{s+t}$ выпуклый замкнутый конус производственных способов, создаваемых нововведением к ($\kappa = 1, 2, ..., \mathcal{N}$), а через $Z^{(\sigma)}$ — конус действующих способов. Тогда

 $Y(\delta) = \{ y \in R^{\delta} | (y,y) \in R - \delta B + Z^{(o)} + \sum_{\kappa \in N(\delta)} Z^{(\kappa)}, y' > 0 \}, Y = \bigcup_{\delta \in \Delta} Y(\delta),$ где $N(\delta) = \{ \kappa | \delta_{\kappa} = 1 \}$. Ясно, что в рассмотренном случае многогранных $Y(\delta)$ конуси $Z^{(\kappa)}$ являются многогранными и определяются образующими, представляющими собой строки матрицы A A, относящиеся к соответствующим нововведениям.

В дальнейшем существенную роль играет понятие множества допустимых (или возможных) объемов (или масштабов) реализации нововведений. Введем соответствующие определения. Пусть f_{κ} —

некоторая фиксированная нормировка для производственных способов, заполняющих конус $Z^{(\kappa)}$. Например, f_{κ} может быть такой линейной функцией, определенной на $Z^{(\kappa)}$, что $f_{\kappa}(\mathbf{z}) > 0$ для $\mathbf{z} \neq 0$. Далее, пусть

$$F(\delta) = \{ f \in R_+^N \mid f_R = f_R(\mathbf{z}^{(n)}), \ \kappa \in \mathcal{N}(\delta), \ P_{\mathbf{z}^{\mathbf{z}}}(\mathbf{z}^{(n)} + \sum_{\mathbf{z}^{(n)}} R^{-\delta}B) > 0,$$

$$z \stackrel{(0)}{\circ} \in Z^{(0)}, \quad z \stackrel{(\kappa)}{\circ} \in Z^{(\kappa)}, \quad f_{\kappa} = 0, \quad \kappa \notin N(\delta) \},$$

В § 2-3 используются также следующие обозначения:

$$Z(8) = \left\{ z \in R^{s+l} \middle| z = (y,y) \in R - \delta B + Z^{(0)} + \sum_{k \in N(8)} Z^{(k)}, y' > 0 \right\},$$

$$Z = \bigcup_{\delta \in \Lambda} Z(\delta),$$

$$V(\delta) = Y(\delta) \times F(\delta), \qquad V = \bigcup_{\delta \in \Delta} V(\delta),$$

$$\mathbb{W}(8) = \mathbb{Z}(8) \times \mathbb{F}(8), \quad \mathbb{W} = \bigcup_{\delta \in \Delta} \mathbb{W}(8).$$

Все эти обозначения используются также с нижним субиндексом , например $\bigvee_i(\delta)$, для того чтоби указать, что соответствую — щее множество относится к отдельному производителю с номером \boldsymbol{t} .

§ 2. Задача оптимизации суммарной полевности

Пусть имеется m производителей, заданных своими множествами производственных возможностей Y_1, \ldots, Y_m так, как это было описано в § I. И пусть имеется n потребителей, заданных, как в классической модели равновесия с помощью функций полезности u_1, \ldots, u_n и запасов продуктов $w'^{(l)}, \ldots, w'^{(n)}$. При этом функции $u_i: R_i^l \longrightarrow R_+$ предполагаются непрерывными, выпуклыми вверх, неубнвающими и неограниченными сверху.

Задача оптимизации суммарной полезности потребителей может быть сформулирована для заданного вектора $\mathcal{L}=(\mathcal{L}_1,\ldots,\mathcal{L}_n)$, ссизмеряющего индивидуальные полезности потребителей.

Найти $(y^{(i)},...,y^{(m)},x^{(i)},...,x^{(n)})$ при условиях:

$$y^{(i)} \in Y_i$$
, $x^{(j)} \ge 0$, $i = 1,...,m$; $j = 1,...,n$, (2.1)

$$\sum_{i=1}^{m} y^{(i)} + \sum_{j=1}^{n} w^{(j)} \ge \sum_{j=1}^{n} x^{(j)}, \qquad (2.2)$$

$$\sum_{j=1}^{n} \mathcal{L}_{j} u_{j} (x^{(j)}) \longrightarrow m\alpha x. \tag{2.3}$$
 Учитывая, что все Y_{i} замкнуты и ограничены, а u_{j} непре-

Учитывая, что все Y_i замкнути и ограничени, а u_j непрерывни, легко показать, что данная задача имеет решение. Наша цель сейчас — охарактеризовать данное решение с помощью двой—ственных переменных (цен). Для этого проанализируем сначала задачу с одним производителем и одним потребителем (m=n=1).

ЗАДАЧА (Δ) . Найти (ψ, x) из условий:

$$y \in Y, x > 0,$$

 $y + w > x,$
 $u(x) \longrightarrow m\alpha\alpha.$

Ограниченное множество производственных возможностей Y , представленное в форме (I.I), можно задать несколько по-другому:

$$Y = \{ y \in \mathbb{R}^{l} \ y = g\widetilde{A} + hA + z^{A}, \quad g\widetilde{\Phi} + h\widetilde{\Phi} + z^{\Phi} \geqslant 0, \\ -\delta B + \widetilde{z} \geqslant 0, \quad z + \widetilde{z} = R, \quad \delta = 0, 1, \quad \delta \widehat{G} \geqslant gS, (z, \widetilde{z}, g, h) \geqslant 0 \}.$$
 (2.4)

Здесь условие $(gS)_{\kappa} > O \Longrightarrow \delta_{\kappa} = 1$ для всех κ заменено на $\delta G > gS$, где G – дмагональная матрица, на главной двагонали которой стоят достаточно большие числа (G_{κ}) , большие максимально возможной суммарной интенсивности, с которой могут быть использовани способы, связанные с нововведением κ . Из (2.4) следует, что задача (Δ) является задачей частично целочисленного (булева) выпуклого программирования. Если же в формулировке этой задачи множество Y заменить на $Y(\delta)$, то получится задача выпуклого программирования. Задачу (Δ) можно решить, например, перебирая всевозможные $\delta \in \Delta$ (которых не больше \mathcal{Z}^{κ} , где \mathcal{N} – размерность вектора δ) и решая задачи выпуклого программирования с данным $Y(\delta)$. Каждую такую задачу будем называть задачей (δ) .

В дальнейшем нам понадобится следующее табличное представление залачи (δ) :

	ν	pop	PA	1	
9(8)		₹(8)	à (8)		
k		Ф	Α		(2.
x	-i		x	<i>U(x)</i>	
	-1	-2 ⁴⁰ (8)	-10 - 2^(8	max	

Здесь $\Phi(\delta)$, $A(\delta)$ - матриць новых способов. для которых cootbetctbypune komiohenth δ pabhu emmhuie: $z^{\varphi}(\delta)$ u $z^{A}(\delta)$ векторы ресурсов, направляемых в производство при данном плаке реализации нововведений δ . Слева указан столбец переменных. где $q(\delta)$ включает только компоненти, относящиеся к нововведениям, реализуемым по плану δ ; x - вектор потребления. Сверху указан вектор двойственных переменных p = (v, p, p, p, 1).

Введем еще одно обозначение

Введем еще одно обозначение
$$Y(G,G^*) = \{y \in R^b | y = g\widetilde{A}^* + hA + z^A, g\Phi + h\Phi + z^\Phi > 0, -\delta B + \widetilde{\tau} \ge 0, \tau + \widetilde{\tau} = R, \delta G \ge gS \ge G^*, (\delta, \tau, \widetilde{\tau}, g, h) \ge 0\}.$$
 Как видим, различие в определении множества $Y(G,G^*)$ по

сравнению с У состоит в следующем. Выброшено условие. что есть булев вектор, требуется лишь, чтобы $\delta > 0$ специально подобранной диагональной матрицы $\,G\,\,$ взята вольная диагональная матрица $\mathcal{G} \geqslant \mathcal{O}_*$ и введено дополнительное условие $_{\mathcal{G}}\mathcal{S}\geqslant\mathcal{G}^{*}$, где $_{\mathcal{G}}^{*}$ есть некоторый заданный неотрипательный вектор.

Рассмотрим задачу (G,G^*) . Ізайти (g,x) из условий:

$$y \in Y(G, G^*), x \ge 0,$$

 $y + w \ge x,$
 $u(x) \longrightarrow m\alpha x.$

Это задача выпуклого программирования, так как и -выпуклая вверх функция. В дальнейшем будет всегда предполагаться, задача (G, G^*) имеет решение, в частности, G^* выбрано ветствующим образом. Легко, конечно, привести различного рода достаточные условия на матрицы A , \widetilde{A} , Φ , $\widetilde{\Phi}$, \mathcal{B} и торы R , G^* , G , при которых задача (G,G^*) имеет решение. Здесь это однако, не делается, чтобы не загромождать изложения.

В дальнейшем нам потребуется формулировка задачи (G, G^*) в матричной форме, представленная следующей схемой:

	V	ß	B	π	ρΦ	PA	î	1]
8			-в	G	<u> </u>		T -	T]
8				-5	ã	Ã	S		(0.71)
h					ф	A			(2.7)
ĩ		-I	I						
r		-I				<u> </u>			ı
æ	-1					F	<u> </u>	11(x)	
				V		T	T = 4	<u> </u>	ı
	-1	- R	0	0	0	-20	G-	max	

Обозначим через g(G) множество всех векторов g, входящих в решение задачи (G,G^*) . Рассмотрим точечно-множественное отображение $\Gamma:G\longrightarrow \Gamma(G)$, определенное для всех $G\geqslant 0$ такое, что

 $\Gamma(G) = \{G' \mid G' = gS, g \in g(G)\}.$

ПРЕДЛОЖЕНИЕ I. Пусть \bar{G} — неподвижная точка отображения Γ , т.е. $\bar{G} \in \Gamma(\bar{G})$. Тогда среди рещений задачи (\bar{G}, G^*) с множеством $Y(\bar{G}, G^*)$ существует такое решение $\bar{v} = (\bar{\delta}, \bar{G}, \bar{h}, \bar{z}, \bar{z})$, в котором δ есть булев вектор.

кое решение $\bar{v}=(\bar{\delta},\bar{g},\bar{h},\bar{z},\bar{z})$, в котором δ есть булев вектор. Доказательство. Пусть $v=(\delta,g,h,z,\tilde{v})$ — такое решение задачи (G,G^*) с $G=\bar{G}$, для которого $gS=\bar{G}$. Тогда, по определению множества $Y(\bar{G},G^*)$, имеем $\delta\bar{G} \geq gS=\bar{G}$. Предположим, что для некоторого номера κ выполнено строгое неравенство $\delta_{\kappa}\bar{G}_{\kappa} \geq \bar{G}_{\kappa}$. Это, в частности, означает, что $\bar{G}_{\kappa} \geq 0$. Изменим наше решение v таким образом, чтобы вмесненное v определяет в точности тот же самый вектор $v \in Y(\bar{G},G^*)$, что и прежнее v . Действительно, надо проверить только выполнение неравенств v . Действительно, уменьшение одной из компонент v не нарушает неравенства. Итак, для всех v таких, что v . Положим v останется тем же самым. Для тех v у которых v и при этом v останется тем же самым. Для тех v у которых v и положим v останется тем же самым. Для тех v у которых v и положим v останется тем же самым. Для тех v у которых v останется тем же самым. Для тех v у которых v останется тем же самым. Для

и не нарушает их. Таким образом, данное изменение исходного решения v не приводит к изменению y , что и доказывает предложение.

Область определения отображения $\mathcal I'$ можно ограничить многогранником $\mathcal U'$

$$\mathcal{U} = \{G \in \mathcal{R}_{+}^{\mathbf{w}} | G = gS, gA + hA + z^{\mathbf{A}} + w > 0, g\Phi + h\Phi + z^{\mathbf{\Phi}} > 0, \\ z + \widetilde{z} = \mathcal{R}, -6B + \widetilde{z} > 0, \delta \widehat{G} > gS > G^*, (\delta, z, \widetilde{z}, g, h) > 0\}.$$

Здесь G — матрица, имеющая тот же смысл, что и в выражении (2.4). В силу предположения о разрешимости задачи (G,G^*) множество U непусто.

Непосредственно из определений Γ и $\mathcal U$ следует, что $\Gamma(G) \subset \mathcal U$ для всех $G \in \mathcal U$.

ПРЕДЛОЖЕНИЕ 2. Существует неподвиж — ная точка $ar{G}$ отображения Γ , опре — деленного на ${\mathcal U}$.

ДОКАЗАТЕЛЬСТВО. Обозначим через M(G) множество векторов $v = (\delta, \tau, \widetilde{\tau}, q, h)$, удовлетворяющих ограничениям:

$$gA + hA + x^{A} + w \ge 0,$$

$$g\Phi + h\Phi + z^{\Phi} \ge 0, \quad \delta G \ge gS \ge G^{*},$$

$$-\delta B + \tilde{\gamma} \ge 0, \quad \chi + \tilde{\gamma} = R, \quad (\delta, \chi, \tilde{\chi}, g, h) \ge 0.$$

Отображение $\Gamma^{(d)}: G \longrightarrow M(G)$ является в области \mathcal{U} непрерывным в смысле определения из [I, с. 38]. Непрерывность $\Gamma^{(d)}$ сразу следует из того факта, что M(G)- многогранник (ограниченное множество).

Введем точечно-множественное отображение $\Gamma^{(2)}: G \longrightarrow \Gamma^{(2)}(G)$, $G \in \mathcal{U}$. Здесь $\Gamma^{(2)}(G)$ состоит из векторов $\bar{v} \in \mathcal{M}(G)$, доставляющих решение задаче (G, G^*) . По теореме 7, § 9 из[I], отображение $\Gamma^{(2)}$ полунепрерывно сверху. Отображение Γ получается из $\Gamma^{(2)}$ операцией проектирования на подпространство, соответствующее переменным G, и последующего (динейного) преобразования векторов G в G с помощью матрицы G . Поэтому, по теореме 2, § 9 из [I], отображение Γ полунепрерывно сверху.

Учитывая, что $\dot{\mathcal{U}}$ — выпуклый компакт, $\Gamma(\dot{G})$ — также выпуклый компакт для любого $G \in \mathcal{U}$, получаем, что Γ удовлетворяет всем условиям теоремы Какутани о существовании неподвижной

TOURN (cm.[I, Teopema I, § 23]).

Предложения I и 2 дают надежду на то, что интересующее нас решение задачи (Δ) можно получить как неподвижную точку отображения Γ . А последняя -как решение задачи выпуклого программирования-характеризуется двойственными ценами.

Нетрудно понять, что не при всяком $\mathcal{E} \in \Delta$ решение задачи (\mathcal{E}) будет соответствовать неподвижной точке отображения \mathcal{E} . Действительно, если, к примеру, имеется новый производ – ственный способ, который по всем компонентам хуже (затраты больше, выпуск меньше) существующего способа, то этот способ не войдет в решение ни одной задачи (\mathcal{E}) с положительной интенсивностью.

Тем не менее неподвижных точек отображения Γ может быть много. В частности, если $G^*=\mathcal{O}$, то среди неподвижных точек есть $\overline{G}=\mathcal{O}$. Их число, очевидно, уменьшается с увеличением компонент вектора G^* . Однако, если G^* будет слишком большим, он может отсечь искомое решение задачи (Δ).

Первый вопрос, который естественно возникает, это — дает ли решение задачи (Δ) всегда неподвижную точку отображения Γ при $G^*=O$? Следующий пример показывает, что оптимальное решение может не соответствовать никакой неподвижной точке при $G^*=O$.

HPUMEP I.

$$A = A = \begin{pmatrix} 1 \\ 1 \end{pmatrix}; \quad \Phi = \begin{pmatrix} -2 & -1 & 0 \\ 0 & -1 & 1 \end{pmatrix}; \quad \Phi = \begin{pmatrix} 0 & 0 & -1 \\ -1 & -2 & 0 \end{pmatrix};$$

$$B = \begin{pmatrix} -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}; \quad R = (5, 5, 1, 0); \quad w = 0; \quad u(x) = x.$$

Нетрудно убедиться, что оптимальное решение задачи (1) есть

при котором значение целевой функции равно 3%

Покажем, что это решение не является неподвижной точкой при G''=O . Положим $\bar{G}=\bar{g}=(1;\;2\frac{1}{2})$ и найдем двойственные переменые, соответствующие решению $\bar{\mathcal{V}}$, являющемуся до-

пустимым решением задачи (G,G^*) с множеством $Y(\overline{G},0)$. Нетрудно видеть, что решение \overline{U} в задаче $(\overline{G},0)$ линейного программирования является сазменым и двойственные переменные, сответствующие этому базису, есть

 $\widetilde{p} = \left(\frac{7}{8}; \frac{7}{18}; \frac{7}{18}; \frac{5}{18}; \frac{7}{18}; \frac{4}{18}; \frac{1}{18}; 1\right)$. Здесь первое число относится к неравенству $\mathcal{I}_1 + \widetilde{\mathcal{I}}_2 \leq 5$, второе число – к неравенству $\mathcal{G}_1 + \mathcal{G}_2 \leq \widetilde{\mathcal{I}}_1$, третье и четвертое – к неравенствам $\mathcal{G}\widetilde{G} > g$, последние четнре числа относятся к балансовым неравенствам для продуктов. (Оценка последнего максимизируемого продукта равна единице.)

По оценкам, $\bar{\rho}$ —единственный не вошедший в онтимальное решение производственный способ, соответствующий переменной h_2 , является сверхрентабельным, т.е. скалярное произведение $\bar{\rho}$ на этот способ строго больше нуля. Следовательно, оптимальное решение задачи (Δ) не является оптимальным решением задачи (G,G^*) при $G=\bar{G}$ и $G^*=O$.

Этот же пример показывает, что при $G^*=O$ вообще не существует неподвижной точки, у которой $\delta=(1,1)$. Действительно, если решение строится только на новых способах, то двойственные переменные для продуктов, соответствующие этому решению в задаче (G,G^*) , равны (0;0,5;1;1). Следовательно, способ, соответствующий переменной h_1 , сверхрентабелен. Решение на способах, соответствующих переменным (g_1,g_2,h_2) , также не дает неподвижной точки, поскольку оно вообще не базисное (включен еще отрицательный орт, соответствующий перво — му продукту).

Чтобы закончить с вопросом о существовании неподвижных точек при $G^*=O$ в рассмотренном примере, отметим, что их всего две: (I) $\vec{G}=(O;O)$, которой соответствует решение, построенное на существующих способах (O;O;O;O;2%;1), и max=3.5, (2) $\vec{G}=(O;1)$, которой соответствует решение (O;1;O;30;30;30;1), max=3.30.

ПРЕДЛОЖЕНИЕ 3. Решение задачи (Δ) всегда дает неподвижную точку отображения / при некотором G^* , $G^* \leq \bar{G}$, где $\bar{G}=\bar{g}\,S$ взято из решения задачи (Δ).

ДОКАЗАТЕЛЬСТВО. Рассмотрим задачу $(\bar{\delta})$, где $\bar{\delta}$ есть часть оптимального решения задачи (Δ) . Задача $(\bar{\delta})$ представляет собой задачу выпуклого программирования, матричная схема

(2.5) которой была представлена выше. Ее решение есть соответ – ствующая часть решения задачи (Δ) . Двойственные переменные, характеризующие согласно теореме Куна-Таккера решение задачи $(\bar{\delta})_{j}$ обозначены через $(\vee, \rho, \rho, \rho^A)$.

Дополним вектор (v, p, p, p^A) до полного вектора двой — ственных переменных $p'' = (v, \hat{p}, \tilde{p}, \pi, p, p, p^A)$ задачи (2.7) при $G = G'' = \overline{G}$, который будет характеризовать данное решение задачи (2.7). Положим $v = u(\bar{x}) - \bar{x}pA$; $\hat{\rho} = \hat{\rho} = (p, p^A) = p$; $\pi_k = b^{B} p/G_k$ для тех K, у которых $G_k > 0$. Для тех K, для которых $G_k = 0$, $\pi_k = 0$. В противном случае. Здесь $\alpha^{K,S}$ — строка матрицы $\tilde{\Phi}$ \tilde{A} , отно — сящаяся к нововведению K и способу S, порождаемому этим нововведением. Максимум берется по всем способам, порождаемым нововведением K. Далее, $\tilde{\pi}_k = \pi_k$, если $G_k > 0$, и $\tilde{\pi} = 0$, если $G_k = 0$. Учитывая, что p — характеристические цены задачи (\tilde{S}) , непосредственно проверяется, что скалярное произведение любой строки матрицы из схемы (2.7) на p^* не больше нуля, а для строк с положительными значениями в решении — строго равно нулю. В частности, $u(\tilde{x}) = \tilde{x} p^A + V$, по определению, и $u(\tilde{x}) \le p^A x + V$ для всех $x \ge 0$ в силу того, что p^A — характеристические цены задачи (\tilde{S}) .

Итак, p^* – характеристические цены для рассматриваемо – го допустимого решения задачи (2.7) при $G = G^* = \overline{G}$. Следовательно, по теореме Куна-Таккера, это решение оптимально, что до-казывает предложение.

Вернемся теперь к примеру І. В задаче (2.7), поставив $G^* = (\frac{1}{3}, \frac{1}{4})$, получим $\widetilde{u} = (\frac{1}{4}, \frac{1}{4})$, $P = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$. Оптимальное решение сохранится, если положить $G^* = (0; 1)$. Тогда характеристические цены будут $\mathcal{T} = (0; \frac{7}{18})$, $P = (\frac{7}{18}; \frac{1}{48}; 1; 1)$. Положив $G^* = (\frac{7}{3}; 0)$, получим при том же решении характеристи — ческие цены $\mathcal{T} = (\frac{52}{70}, 0)$, $P = (\frac{1}{10}; \frac{8}{10}, \frac{9}{10}; 1)$. Одновременно оба ограничения уменьшить нельзя, ибо в этом случае, как было показано выше, неподвижной точки для данного решения не существует.

Предложение 3 можно переформулировать в виде теоремы I. Вместо задачи (G, G^*) можно рассматривать эквивалентную ей в определенном смысле задачу (G, π).

ЗАДАЧА (G,π) : Найти $(\delta,\tau,\widetilde{\tau},q,h)$ из условий

$$g\tilde{A} + hA + r^{A} + w = y > 0,$$

 $g\tilde{\Phi} + h\Phi + r^{\Phi} > 0, -8B + \tilde{\tau} > 0,$
 $\tau + \tilde{\tau} = R, 8G > gS, (8, \tau, \tilde{\tau}, g, h) > 0,$
 $u(y) + gS\pi \longrightarrow max.$

Эквивалентность задач (G,G^*) в (G,π) понимается следующим образом. Для любого решения σ задачи (G,G^*) найдется вектор π такой, что σ является решением задачи (G,π) , в, наоборот, для любого решения σ' задачи (G,π) найдется такой вектор G^* , что σ' оказывается решением задачи (G,G^*) . Эквивалентность в этом смысле задач (G,G^*) и (G,π) является хорошо известным фактом теории функций Лагранжа.

TEOPEMA I. Пусть $(\bar{\delta}, \bar{q}, \bar{h})$ есть реше — ние задачи (Δ) и пусть $\bar{G} = \bar{g}S$. Тогда найдется такой вектор $\bar{\pi} \in R_+^N$, что $(\bar{\delta}, \bar{q}, \bar{h})$ оказывается решением задачи (G, π) при $G = \bar{G}$, $\pi = \bar{\pi}$.

§ 3. Существование состояния равновесия

Локазательство существования равновесия в молели с нововведенвями опирается на теорему существования равновесия в модели. Гле множества произволственных возможностей заланы классическим образом, т.е. с помощью выпуклых компактов. Однако в отличие от обычно рассматриваемых формулировок нам потребуется, -идисп инирика в исид бакатиновского имкининуй имивакан интрист ли, а произвольные вогнутые функции. Дополнительные или обобщения состоят также в том, что (а) множества производственных возможностей не состоят из векторов, представляющих собой затрати и выпуск продуктов, последние получаются из произволственных возможностей линейным преобразованием: (б) функ ими похода потребителей являются произвольными непрерывными функциями, удовлетворяющими закону Вальраса. Будем обозначать эту модель буквой M . Все обозначения, вводимые для данной модели M , являются автономными, не связанными с предыдущими или последующими обозначениями, относящимися к основной модели.

Итак, модель экономического равновесия M определена с помощью следующей информации:

 $\{H^{(i)}, \dots, H^{(m)}, A^{(i)}, \dots, A^{(m)}, \varphi_1, \dots, \varphi_m, u_1, \dots, u_n, \mathcal{D}_i, \dots, \mathcal{D}_k, \omega^{(m)}, \omega^{(m)}\}$. Здесь $H^{(i)}$ — множество производственных возможностей (планов) i—го производителя, которое предполагается выпуклым компактом, содержащим нулевой вектор; $A^{(i)}$ — матрица преобразования производственных возможностей в вектор выпуска и затрат продуктов, т.е. $\mu^{(i)} = h^{(i)}A^{(i)}$ представляет собой вектор, положитель— ные компоненты которого показывают выпуск, а отрицательные-затраты соответствующих продуктов, если реализуется производственный план $h^{(i)} \in H^{(i)}$; далее, φ_i — целевая функция i—го производителя, определенная на $H^{(i)}$, предполагается непрерывной; u_i — целевая функция i—го потребителя, определенная на

 u_j — целевая функция j — го потребителя, определенная на неотрицательном ортанте R_j^{l} , неотрицательная, непрерывная, вогнутая (выпуклая вверх), неограниченно возрастающая.

 \mathcal{D}_j - функция дохода j -го потребителя, определенная в об - дасти \mathcal{U} , где $\mathcal{U}=\mathbf{Y}^{(m)}\times \mathbf{P}_j$

$$Y^{(i)} = \{ y^{(i)} \in R^{\ell} | y^{(i)} = h^{(i)} A^{(i)}, h^{(i)} \in H^{(i)} \}, P = \{ p \in R^{\ell} | \sum_{s=1}^{\ell} p_s = 1 \}.$$

Функции $\mathcal{Q}_1, ..., \mathcal{Q}_n$ предполагаются непрерывными и удовлетво — ряют тождеству (закону Вальраса)

$$\sum_{j=1}^{m} \mathcal{D}_{j}(\sigma) = \sum_{k=1}^{m} y^{(k)} \rho$$

во всей области своего определения. Через $w^{(i)},\dots,w^{(n)}$ обозначени начальные количества (запасы) продуктов у потребителей, $w^{(j)}>0$, $j=1,2,\dots,n$. Состояние экономического равновесия есть набор векторов $Z=(\bar{h}^{(i)},\dots,\bar{h}^{(n)},\bar{x}^{(i)},\dots,\bar{x}^{(n)},\bar{\rho})$, удовлетворяющий условиям:

$$\sum_{i} \bar{y}^{(i)} + \sum_{j} w^{(j)} \ge \sum_{j} \bar{x}^{(j)} , \text{ fig. } \bar{y}^{(i)} = \bar{h}^{(i)} A^{(i)}_{;} (3.1)$$

$$\varphi_{i}(\overline{h}^{(i)}) = \max_{h \in \mathcal{H}^{(i)}} \varphi_{i}(h); \qquad (3.2)$$

$$\mathcal{U}_{,}(\bar{x}^{(j)}) = \max_{x\bar{p} \leq \mathcal{D}_{j}(\bar{v})} \mathcal{U}_{,}(x), \quad (3.3)$$

ТЕОРЕМА 2 (существования состоя — ния экономического равновесия). В модели M состояные экономичес — кого равновесия существует.

ДОКАЗАТЕЛЬСТВО. Воспользуемся схемой, примененной для

доказательства теоремы 18.1 из $\{2\}$. Представим модель M в виде игры нескольких лиц в нормальной форме. При этом множества стратегий некоторых игроков непрерывно зависят от самих стратегий. Формулировку такой игры и определение для нее состояния равновесия см. в $\{2, \frac{5}{3}\}$

Итак, имеется (m+n+1) игрок. Пусть \mathcal{Z} -обозначение для ситуации игры (набора стратегий всех игроков), $X^{(5)}(\mathcal{Z})$, $\Psi_{\mathbf{S}}(\mathcal{Z})$ -соответственно множество стратегий и значение целевой функции игрока S в ситуации \mathcal{Z} . Точечно-множественные отображения $X^{(5)}:_{\mathcal{Z}}\longrightarrow X^{(5)}(z)$ ($S=1,\ldots,m+n+1$), заданные на некотором выпуклом компакте Z, определяются следующим образом:

$$\begin{split} & X^{(s)}(z) = Y^{(s)}, \quad \psi_{s}(z) = \varphi_{s}(h^{(s)}), \quad s = 1, ..., m; \\ & X^{(s)}(z) = \left\{ x^{(j)} \in \mathcal{R}_{+}^{\ell} \ p x^{(j)} \leq \mathcal{D}_{j}(v) + w^{(j)} p, x^{(j)} \leq \hat{Y} \right\} \end{split}$$

для $\mathsf{теx} \ \mathcal{Z}$, для которых

$$\psi_{s}(z) = u_{j}(x^{(j)}), \quad s = m+j, \quad j = 1,...,n,
\chi^{(s)}(z) = P, \quad P = \{ p \in \mathbb{R}^{l} : \sum_{k} P_{k} = 1 \},
\psi_{s}(z) = (\sum_{j=1}^{n} x^{(j)} - \sum_{k=1}^{m} y^{(k)} - \sum_{j=1}^{n} w^{(j)}) p, \quad s = m+n+1,$$

где $\psi^{(i)} = h^{(i)}A^{(i)}$, i = 1,...,m. Здесь рактически зависят от $\mathcal E$ только множества стратегий для игроков S = m + 1,...,m + n. Вектор \hat{Y} указывает верхнюю границу возможного производства продукции. Отсюда $Z = H^{(i)} \times \cdots \times H^{(m)} \times \hat{Y} \times \cdots \times \hat{Y} \times P$.

Непосредственно проверяется, что полученная игра удов – летворяет всем условиям теоремы 17.1 из [2],и, следовательно, в ней существует состояние равновесия в смысле Нэша. Обозначим его через \overline{Z} . Покажем теперь, что ситуация \overline{Z} является состоянием равновесия в модели M. Для этого надо проверить только выполнение неравенств (3.1), поскольку соотношения (3.2) и

(3.3) выполнены по определению состояния равновесия игры. Предположим противное, т.е. пусть неравенства из (3.1) с номерами K_1,\dots,K_{z} (2>1) не выполняются. Тогда поскольку игрок с номером m+n+1 выбирает такие цены \vec{p} , которые максимизируют функцию ψ_{m+n+1} , то имеет место равенство

$$\sum_{s=i}^{\infty} \overline{p}_{\kappa_s} = 1, \qquad (3.4)$$

а цены остальных продуктов, следовательно, равны нулю. Умножив левую и правую части неравенств (3.1) на соответствующие цены и просуммировав их, учитывая (3.4) и предположение о их невиполнении, получим

$$\sum_{i} \bar{y}^{(i)} \bar{p} + \sum_{i} w^{(i)} \bar{p} < \sum_{i} x^{(i)} \bar{p} . \tag{3.5}$$

По определению функции $\mathcal{D}_1,\dots,\mathcal{D}_\mu$, имеем $\sum_j \mathcal{D}_j(\sigma) = \sum_l \bar{y}^{(i)} \bar{p}$, а, по определению состояния равновесия игры, получаем

$$\bar{x}^{(j)}\bar{\rho} \leq \mathcal{D}_{j}(\bar{v}) + w^{(j)}\bar{\rho},$$

что противоречит неравенству (3.5).

Полученное противоречие доказывает выполнение неравенства (3.1) и завершает доказательство теоремы в целом.

Сформулируем теперь модель экономического равновесия с учетом реализации нововведений. Будем обозначать её через MN. Все обозначения, введенные ранее в § I-2, здесь сохраняются. Модель MN задается с помощью следующей информации:

 $\{V_1, \dots, V_m, u_1, \dots, u_n, w^{(i)}, \dots, w^{(ii)}, \mathcal{D} = (\mathcal{D}_1, \dots, \mathcal{D}_{n+2})\}$, где V_i — множество производственных возможностей i —го производителя, $V_i = Y_i \times F_i$, как уже отмечалось выше, u_i — функция полезности j —го потребителя, $w^{(i)}$ — имеющиеся у него запасы продуктов; \mathcal{D}_i ($\mathcal{Z}_i^{(i)}, \dots, \mathcal{Z}_i^{(m)}$) р, π) — доход i —го потребителя при выбранных производственных возможностях $\mathcal{Z}_i^{(i)}, \dots, \mathcal{Z}_i^{(m)}$ и ценах \mathcal{P}_i , π на продукты и нововве — дения соответственно. Здесь первые π потребителей — это собственно потребители (потребители продукции, вкусы которых определяются функциями u_1, \dots, u_n), а следующие π потребителей заинтересованы в потреблении только реализованных нововнедений. Об экономическом смысле этой категории потребителей говорится ниже.

Состояние экономического равновесия представляет собой

набор векторов $\bar{z} = (\bar{v}^{(i)}, \dots, \bar{v}^{(m)}, \quad \bar{x}^{(i)}, \dots, \bar{x}^{(k)},$ $\bar{g}^{(i)}, \dots, \bar{g}^{(i)}, \bar{p}, \bar{\pi})$, где $\bar{v}^{(i)} = (\bar{y}^{(i)}, \bar{f}^{(i)}),$ удовлетворяющий условиям

$$\sum_{i} \bar{g}^{(i)} + \sum_{I} w^{(I)} \geqslant \sum_{I} \bar{x}^{(I)}; \qquad (3.6)$$

$$\sum_{i=1}^{m} \bar{f}^{(i)} \ge \sum_{\kappa=1}^{\bar{\kappa}} \bar{g}^{(\kappa)}; \qquad (3.7)$$

$$\bar{y}^{(i)}\bar{p} + \bar{f}^{(i)}\bar{\pi} = \max(y^{(i)}\bar{p} + f^{(i)}\bar{\pi}), \ i=1,...,m; (3.8)$$

$$(y^{(i)}, f^{(i)}) \in V_i$$

$$u_{j}(\bar{x}^{(j)}) = m\alpha x \ u_{j}(x), \quad j = 1, ..., n$$

$$x\bar{p} \leqslant \mathcal{D}_{j}(\bar{x}^{(i)}, ..., \bar{x}^{(m)}, \bar{p}, \bar{t}) + w^{(j)}\bar{p}$$

$$x \geqslant 0$$
(3.9)

$$\bar{\pi}\bar{g}^{(\kappa)} = \max_{\substack{\bar{\tau} \ q < P_{n+\kappa} \\ q \geqslant 0}} \bar{\pi}q < P_{n+\kappa} (\bar{z}^{(2)}, ..., \bar{z}^{(m)}, \bar{p}, \bar{\pi}). \tag{3.10}$$

ПРЕДПОЛОЖЕНИЕ І. Функции u_j (j=1,...,n) определены в R_+^{δ} , вогнутые, неограниченно возрастающие.

ПРЕДПОЛОЖЕНИЕ 2. Ф У Н К Ц И В \mathcal{Q}_j ($j=1,\ldots,n+z$) о пределены в области $\mathcal{U}=Z_1\times \cdots \times Z_m\times P\times \Pi$, где $P=\{p\in \mathcal{R}_+^g\mid \sum_j p_j=1\}$, $\Pi=\mathcal{R}_+^N$, непрерывны и удовлетворяют закону Вальраса (3.II) отдельно для производства продуктов и производства новов ведений во всей области своего определения:

$$\sum_{j=1}^{k} \mathcal{D}_{j}(\boldsymbol{z}^{(i)}, ..., \boldsymbol{z}^{(m)}, \rho, \boldsymbol{\pi}) = \sum_{b=1}^{m} \boldsymbol{y}^{(b)} \rho,$$

$$\sum_{j=n+1}^{k+1} \mathcal{D}_{j}(\boldsymbol{z}^{(i)}, ..., \boldsymbol{z}^{(m)}, \rho, \boldsymbol{\pi}) = \sum_{b=1}^{m} \boldsymbol{f}^{(b)} \boldsymbol{\pi}.$$
(3.II)

Пусть $f_{i}(\delta^{(t)})$ — множество возможных объемов реализации нововведений для производителя i при плане реализации $\delta^{(t)}$, Δ_{i} есть множество всех допустимых планов нововведений $\delta^{(t)}$.

ПРЕДПОЛОЖЕНИЕ 3. Найдутся векторы

 $\bar{\pi} \in \{\pi \in \mathcal{R}_+^N | \sum_{j=1}^N \pi_k = 1\}$ и $\bar{\delta} = (\bar{\delta}^{(i)}, ..., \bar{\delta}^{(n)})$ такие, что для каждого произво – дителя i выполнено строгое неравенство

$$\max_{f \in F_{i}(\bar{\delta}^{(i)})} f \bar{\pi} > \max_{f \in F_{i}(\bar{\delta}^{(i)})} f \bar{\pi}, \quad \delta^{(i)} \in \Delta_{i}, \quad \delta^{(i)} = \bar{\delta}^{(i)}. \quad (3.12)$$

Ниже показывается, что это предположение вытекает из довольно слабых условий, накладываемых на матрицы A , \widetilde{A} , \mathcal{P} , $\widetilde{\mathcal{P}}$ и \mathcal{B} .

ТЕОРЕМА 3. При выполнении предпо — ложений I—3 состояние равновесия в модели \mathcal{N} существует.

ДОКАЗАТЕЛЬСТВО. Пусть π^* - вектор цен для нововведений, о котором идет речь в предположении 3, и пусть $\bar{\delta}=(\bar{\delta}^{(1)},\ldots,\bar{\delta}^{(n)})$ - план нововведений, на котором реализуется для данного π^* неравенство (3.12). Пусть

y = max max max max yp. $p \in P$ i $\delta \in \Delta_i$ $y \in Y^{(i)}(\delta^{(i)})$ Поскольку $Y^{(i)}(\delta^{(i)})$ и p - компакты, то $y < \infty$. Найдется $\lambda > O$ такое. что

$$\min \left[\lambda \pi^* f(\bar{\mathcal{S}}^{(i)}) - \max_{\substack{\delta^{(i)} \in \Delta_i \\ \delta^{(i)} \neq \bar{\mathcal{S}}^{(i)}}} \lambda \pi^* f(\mathcal{S}^{(i)})\right] > \gamma. \tag{3.13}$$
 Обозначим $\lambda \pi^* = \bar{\pi}$. Построим модель M следующим образом.

Обозначим $\lambda\pi^*=\bar{\pi}$. Построим модель M следующим образом. В качестве множеств производственных возможностей производителей возьмем $\mathcal{H}^{(i)}(\bar{\delta}^{(i)})$,

$$H^{(i)}(\bar{\delta}^{(i)}) = \{(g,h) | g \tilde{\Phi}^{(i)}(\bar{\delta}^{(i)}) + h \Phi + z^{(i)\Phi}(\bar{\delta}^{(i)}) \geq 0, g,h \geq 0\},$$

где $\widetilde{\mathcal{P}}^{(i)}$ ($\overline{\mathcal{S}}^{(i)}$) получена из $\widetilde{\mathcal{P}}^{(i)}$ вычеркиваем строк, для которых $\overline{\mathcal{S}}^{(i)} = \mathcal{O}$, $z^{(i)} \overset{\mathcal{P}}{\mathcal{S}}^{(i)}$ — вектор внутренних для производство в соответствии с планом нововведений $\widetilde{\mathcal{S}}^{(i)}$. Матрицы преобразований производственных возможностей в векторы выпуска и затрат продуктов есть $\widetilde{A}^{(i)}$ ($\widetilde{\mathcal{S}}^{(i)}$), $A^{(i)}$, где первая соответствует переменным g, а вторая — h, матрица $\widetilde{A}^{(i)}$ ($\widetilde{\mathcal{S}}^{(i)}$) получена из $\widetilde{A}^{(i)}$ вычеркиваем строк, соответствующих нулевым компонентам вектора $\widetilde{\mathcal{S}}^{(i)}$.

$$\varphi_{i}(g^{(i)},h^{(i)},p) = \left[g^{(i)}\widetilde{A}^{(i)}(\bar{\delta}^{(i)}) + h^{(i)}A^{(i)} + \tau^{(i)A}(\bar{\delta}^{(i)})\right]p + g^{(i)}S^{(i)}\bar{\delta}^{(i)}\bar{\delta}^{(i)}$$

где $S^{(i)}(\bar{\delta}^{(i)})$ также получена из $S^{(i)}$ вычеркиванием строк, соответствующих нулевым компонентам $\bar{\delta}^{(i)}$, $\bar{\pi}^{(i)}$ – часть век-

тора $\tilde{\pi}$, относящаяся к производителю i . Функции $u_1,...,u_n$, $\tilde{\mathcal{D}}_1,...,\mathcal{D}_n$, векторы $w^{(i)},...,w^{(n)}$ берутся из модели MN . Сформулированная модель M удовлетворяет условиям теоремы 2, и, следовательно, в ней существует состояние равновесия. Обозначим его через $(\bar{g}^{(i)}, \bar{h}^{(i)}, ..., \bar{g}^{(m)}, \bar{h}^{(m)}, \bar{x}^{(i)}, ..., x^{(n)}, \bar{p})$.

Построим с помощью состояния равновесия модели M и вектора $ar{\pi}$ искомое состояние равновесия модели MN . Положим

$$\vec{q}^{(i)} = \vec{g}^{(i)} \widetilde{A}^{(i)} (\bar{\delta}^{(i)}) + \bar{h}^{(i)} A^{(i)} + z^{(i)} A (\bar{\delta}^{(i)}).$$
Векторы $\vec{g}^{(\kappa)}$ ($\kappa = 1, ..., z$) определим из соотношений
$$\sum_{\kappa=i}^{z} \vec{g}^{(\kappa)} = f(\bar{\delta}) = \sum_{i=1}^{m} f(\bar{\delta}^{(i)}), \qquad (3.14)$$

$$\vec{g}^{(\kappa)} \vec{\pi} = \mathcal{D}_{n+\kappa} (\vec{q}^{(i)}, f^{(i)}, ..., \vec{q}^{(m)}, f^{(m)}, \bar{p}, \bar{\pi}), q_{\kappa} > 0.(3.15)$$

Если $z > \ell$, то векторы $\bar{g}^{(\kappa)}$, очевидно, определяются этими соотношениями неоднозначно

Проверим, что $(\bar{\delta}^{\prime\prime}, \bar{g}^{\prime\prime\prime}, \bar{h}^{\prime\prime})$..., $\bar{\delta}^{\prime\prime\prime}, \bar{g}^{\prime\prime\prime}, \bar{h}^{\prime\prime\prime})$, $\bar{x}^{\prime\prime\prime}, \bar{p}, \bar{x}^{\prime\prime}$) доставляет состояние равновесия модели MN. Со – отношения (3.6) и (3.9) выполняются по определению состояния модели M . Соотношения (3.7) и (3.10) выполнены, поскольку $\bar{q}^{(\kappa)}$ удовлетворяют уравнениям (3.14), (3.15). Наконец, обратим ся к соотношению (3.8). По определению состояния равновесия моцели M, имеем для каждого i

$$\begin{split} \bar{y}^{(i)}\rho + f^{(i)}(\bar{\delta}^{(i)})\bar{\pi} &= m\alpha\alpha \ (y^{(i)}\rho + f^{(i)}\bar{\pi}), \\ (y^{(i)},f^{(i)}) &\in Y_i \ (\bar{\delta}^{(i)}) \times F_i \ (\bar{\delta}^{(i)}). \end{split}$$

В силу соотношения (3.13) величина $\bar{\varphi}^{(i)}\bar{p} + f^{(i)}(\bar{\delta}^{(i)})\bar{\pi}$ заведомо больше $\psi^{(i)}\bar{p} + f^{(i)}\bar{\pi}$ в случае, когда $\psi^{(i)}\in Y_i(\delta^{(i)})$, $f^{(i)}\in F_i(\delta^{(i)})$, $\delta^{(i)}\neq\bar{\delta}^{(i)}$. Следовательно, соотношение (3.8) выполнено для построенного равновесия и тем самым доказательство теоремы завершено.

Вернемся теперь к предположениям, лежащим в условиях теорэмы существования. Предположение 2 о свойствах функций пределения доходов $\mathscr{Q}_1, \ldots, \mathscr{Q}_n$ содержит закон Вальраса (38кон сохранения при перераспределении финансовых средств), что является вполне естественным с экономической точки эрения. полнительное менее реалистическое условие состоит в том, что закон Вальраса выполняется в более сильной форме: отдельно для "рынка" нововведений. Каждый произво -"сынка" пролуктов W дитель максимизирует суммарную прибыль, полученную как от производства продуктов, так и от "производства" нововведений. Однако далее в соответствии со свойствами функций 🏖 от производства продукции идет только к потребителям продукции. а прибыль от "производства" нововведений соответственно распределяется только потребителям нововведений. Это предположение . конечно, не совсем оправданно с экономической точки зрения, й реальной экономической практике было бы довольно затруднительно обеспечить точное соблюдение такого типа ограничений. Отказ ОТ ДАННОГО ПРЕДПОЛОЖЕНИЯ ПРИВОЛИТ К ЗНАЧИТЕЛЬНЫМ ТРУЛНОСТЯМ В доказательстве теоремы существования состояния равновесия. нечно, в состоянии равновесия (просто по определению) прибыль от производства продуктов (соответственно нововведений) только потребителям продуктов (нововведений). Однако это имеет место именно в состоянии равновесия. Предположение же 2 требует выполнения этого условия во всех состояниях.

Предположение 3, как уже отмечалось, может быть доказано при довольно слабых и экономически оправданных условиях, накладываемых на производственные возможности производителей.

Рассмотрим задачу отыскания максимального, в смысле естественного порядка, элемента \bar{f} на многограннике F_i ($\delta^{(i)}$) , $\delta^{(i)} \in \Delta_i$. Эту задачу можно представить себе как экстремаль — ную задачу на максимизацию чясла ассортиментных наборов в структуре \bar{f} .

В неравенствах данная задача линейного программирования запишется так:

найти
$$(g,h,\lambda) \ge 0$$
 из условий:
 $g\tilde{A}^{(i)}(\delta^{(i)}) + hA^{(i)} + z^{(i)A}(\delta^{(i)}) \ge 0$. (3.16)

$$g\widetilde{\Phi}^{(i)}(\delta^{(i)}) + h\widetilde{\Phi}^{(i)} + z^{(i)\Phi}(\delta^{(i)}) \geqslant 0, \qquad (3.17)$$

$$gS^{(i)}(\delta^{(i)}) \geqslant \lambda \bar{I}, \qquad \lambda \longrightarrow m\alpha x. \qquad (3.18)$$

Здесь, как и выне, $\widetilde{A}^{(i)}(\delta^{(i)})$, $\widetilde{\Phi}^{(i)}(\delta^{(i)})$, $S^{(i)}(\delta^{(i)})$, $z^{(i)A}(\delta^{(i)})$, $z^{(i)\Phi}(\delta^{(i)})$ - соответствующие реализации матриц и векторов при фиксированном плане нововведений $\delta^{(4)}$.

Обозначим двойственные переменные, соответствующие нера-

венствам (3.16), (3.17), через $\rho(\delta^{(4)}, \bar{I})$.
ПРЕДПОЛОЖЕНИЕ 3'. В моделиMN для дроопроизводителя i и любого $\delta^{(4)} \in \Delta_i$ r o

$$\rho(\delta^{(i)}, \bar{t}) \delta^{(i)} > 0, \quad \bar{t} \in \mathcal{R}_{+}^{N}, \quad \bar{t} \neq 0, \quad (3.19)$$

для тех $\kappa = 1,...,N$, для которых $\delta_{n}^{(l)} = 0$.

Предположение 3', очевидно, имеет место, если, например, B>O или $\rho(\delta^{(i)}, \bar{I})>O$ для всех $\delta^{(i)}$ и \bar{I} . С экономичес кой точки зрения предположение 3 вполне оправданно. Оно означает. что затрати на любое нововредение при любих ценах. получаюшихся из экстремальной производственной задачи, не равны нулю. Другими словами, можно сказать так: не существует такого критерия оптимальности для производителя, при котором осуществление или неосуществление какого-либо нововведения не сказывается на его затратах.

ПРЕДЛОЖЕНИЕ 4. Предположение 3 из Предположения

ДОКАЗАТЕЛЬСТВО. Найдем все векторы $\delta^{(i)} \in \Delta_i$, на которых достигается

$$\max_{\delta^{(i)} \in \Delta_i} \max_{f \in F_i(\delta^{(i)})} f_i = \bar{f}_i.$$

Обозначим их через Δ_{j} $^{(1)}$. Если Δ_{i} $^{(1)}$ содержит более одного элемента, то виделим в Δ_{j} $^{(1)}$ множество Δ_{i} $^{(2)}$, состоящее из таких $\delta^{(i)}$, на которых достигается

$$\max_{\delta^{(i)} \in \Delta_{L}(1)} \max_{f \in F_{L}(\delta^{(i)})} f_{2} = \overline{f}_{2}.$$

Снова, если Δ_{i} (2) содержит более одного элемента, продолжим данный процесс (нахождение лексикографического максимума). В резумьтате определим $\Delta_{\underline{i}}(3) \supseteq \Delta_{\underline{i}}(4) \supseteq \cdots$. Процесс останавливается на некотором mare $\gamma < N$, где N - размерность

инвается на некотором шаге $\gamma \le N$, где N — размерность вектором f , т.е. $\Delta_i(\gamma)$ содержит только один элемент. Дейстингельно, в противном случае найдутся $\hat{\delta}^{(i)}$: $\hat{\delta}^{(i)} \in \Delta_i(\gamma)$, причем $\hat{\delta}^{(i)} \neq \hat{\delta}^{(i)}$. Максимальний элемент $\bar{f} = (\bar{f}_1, ..., \bar{f}_N)$, по определению, содержится и в $F_i(\hat{\delta}^{(i)})$, и в $F_i(\hat{\delta}^{(i)})$. Из определения множеств $F_i(\hat{\delta}^{(i)})$ непосредственно следует, что если $f \in F_i(\hat{\delta}^{(i)})$ и в $f_i > 0$, то $\hat{\delta}^{(i)} = 1$, т.е. в данном случае $\hat{\delta}^{(i)} = \hat{\delta}^{(i)} = 1$ для всех κ таких, что $\bar{f}_i > 0$. Поскольну в $\Delta_i(\gamma)$, очевидно, содержится такой вектор $\delta^{(i)}$, у которого $\hat{\delta}^{(i)} = 0$; если $\bar{f}_K = 0$, то будем для определенности слимить, что таким вектором является $\hat{\delta}^{(i)}$. Следовательно, $\hat{\delta}^{(i)} \le \hat{\delta}^{(i)}$ и $\hat{\delta}^{(i)} = 1$ для некоторого $\hat{\kappa}$, для которого $\hat{\kappa}^{(i)} = 0$. Из этого условия вытекает, что $\chi(\hat{\delta}^{(i)}) > \chi(\hat{\delta}^{(i)}) + \hat{\delta}^{(i)}$ $\hat{\beta}^{(i)} = 0$. Ms storo ychobus buteraet, to $\chi(\hat{\beta}^{(i)}) \geqslant \chi(\tilde{\beta}^{(i)}) + \hat{\beta}^{(i)}$

В силу теоремы двойственности для задачи линейного программирования (3.16)-(3.18) с ассортиментным вектором \vec{I} , решение воторой определяет максимальный элемент $ar{I}$, т.е. $ar{\lambda}=1$, имеeM

 $z(\widehat{\delta}^{(i)}) p(\widehat{\delta}^{(i)}, \overline{I}) = \overline{\lambda} = 1.$

Сопоставляя это соотношение с последним неравенством, получаем $\mathcal{C}(\widehat{\mathcal{S}}^{(k)}) p(\widehat{\mathcal{S}}^{(k)}, \overline{f}) > 1 + b^{(\widetilde{K})} p(\widehat{\mathcal{S}}^{(k)}, \overline{f}),$ и на основании предположения 3

 $Z(\widehat{\mathcal{S}}^{(i)})$ р $(\widehat{\mathcal{S}}^{(i)},\widehat{I})>1$. (3.20) Неравелетво (3.20) говорит, о том, что \widehat{I} не является максимальным злементом на множестве F_i $(\widehat{\mathcal{S}}^{(i)})$, что невозможно. Следо вательно, в множестве $\Delta_{i}(y)$ содержится единственный элемент $\hat{\delta}^{(i)}$

Поскольку это рассуждение верно для каждого производителя i , в результате описанной процедуры нахождения максимального завмента получаем вектор $\vec{\delta} = (\vec{\delta}^{(4)}, \dots, \vec{\delta}^{(m)})$.

Для завершения доказательства осталось указать, как подбирается вектор $\tilde{\pi}$, для которого выполняется соотношение (3.12). Пусть $\bar{s}^{(i)} \in \Delta_i(f)$. Поскольку F_i , по определению ограниченное множество, существует $\max_{K} \max_{K} f_{K} = 1 < +\infty$. В качестве $\bar{\pi}^{(\ell)}$ можно, например, взять вектор, определенный соотно-WEHNAME:

$$\bar{\pi}_{\kappa}^{(d)} = \frac{L(\gamma+1-\kappa)\cdot\pi_{\kappa+1}}{f_{\kappa}} \quad \text{ARR } \kappa \leq \gamma-1,$$

$$\bar{\pi}_{\chi}^{(d)} = 1, \quad \bar{\pi}_{\kappa}^{(d)} = 0 \quad \text{ARR } \kappa > \gamma.$$
(3.21)

Действительно, из соотношений (3.21) непосредственно вытекает, что $\bar{\pi}_{\kappa}\bar{f}_{\kappa} > L (\gamma - \kappa) \bar{\pi}_{\kappa + \epsilon}$ для любого $f \in F_{\epsilon}$, to $\bar{\pi}_{\kappa}\bar{f}_{\kappa} > \sum_{s=\kappa} \bar{\pi}_{s} f_{s}$. Поскольку $L > f_{\kappa}$ для любого $f \in F_{\epsilon}$, to $\bar{\pi}_{\kappa}\bar{f}_{\kappa} > \sum_{s=\kappa} \bar{\pi}_{s} f_{s}$. Отсюда, вспоминая определение I, получаем искомое соотношение (3.12).

§ 4. Равновесие и оптимальность

Вернемся к сформулированной в § 2 задаче (2.1)-(2.3) оптимизации суммарной полезности потребителей. Целевая функция этой зацачи представляет собой сумму целевых функций потребителей. взятых с априорно заданными весами $\mathcal{L} = (\mathcal{L}_1, ..., \mathcal{L}_n)$. Основной вопрос, касаршийся связи между состояниями равновесия и решениями экстремальной задачи типа (2.1)-(2.3), состоит в следующем. При каких условиях можно построить модель MN (в частности, найти бункции распределения доходов ${\mathcal D}$) такую, что решение задачи (2.1)-(2.3) оказалось он состоянием равновесия модели? И наоборот. при каких условиях состояние равновесия моделя MN оказывается решением задачи максимизации суммарной полезности с некотогнии весами \mathcal{L} ? В классической модели экономического равновесия Эрроу-Дебре ответ на этот вопрос содержится в соответствующей теореме эквивалентности. См. по этому поводу, например, [2, § 191) 3 настоящем параграфе показывается, что для модели экономического равновесия с нововведениями ситуация несколько иная. хотя во многом схожая с классической.

Сформулируем экстремальную задачу, у которой ограничения совпадают с соответствующими ограничениями задачи (2.1)-(2.3), а в целевую функцию добавлено еще одно слагаемое.

нелевую пункцию дооавлено еще одно слагаемое. Найти
$$(y^{(i)}, i^{(i)}) \in Y_i \times F_i$$
, $i = 1, ..., m$; при условиях: $(y^{(i)}, i^{(i)}) \in Y_i \times F_i$, $i = 1, ..., m$; (4.1) $x^{(i)} \ge 0$, $j = 1, ..., n$; (4.2)
$$\sum_i y^{(i)} + \sum_i w^{(i)} \ge \sum_i x^{(i)}$$
 $\sum_i x_i x_i x^{(i)} + \sum_i x_i x^{(i)} \xrightarrow{} m\alpha x$. (4.4) Здесь π - Необрицательный вектор, который можно интерпре-

тировать как вектор цен (весов) нововведений.

ТЕОРЕМА 4. Пусть $\bar{\sigma} = (\bar{g}^{(4)}, \bar{f}^{(4)}, \dots, \bar{g}^{(m)}, \bar{f}^{(m)}, \bar{x}^{(1)}, \dots, \bar{x}^{(n)}, \bar{g}^{(n)}, \bar{p}, \bar{t})$ -состояние равновесия моде-ли MN . Найдутся векторы $\mathcal{L}^* \geq \mathcal{O}$ и $\pi^* \geqslant \mathcal{O}$ rakue, что состояние равновесия \bar{v} доставляет решение дачи (4.I)-(4.4) с целевой функцией,

в определение которой входят веса α^* , π^* .

ДОКАЗАТЕЛЬСТВО. Обозначим через W_i ($\delta^{(i)}$) множество,

состоящее из векторов вида

((O,...,-1,O,...,O)(y,f)(O,...,O)) размерности m+b+N+2n. Здесь, как и выше, b — число продуктов; в векторе (O,...,-1,...,O) размерности m число n — число n — иместе; $y \in Y_i(\delta^{(i)})$, $f \in F_i(\delta^{(i)})$; вектор (O,...,O) имеет размерность 2n. Введем теперь мислество W:

$$\widetilde{W} = \left\{ \widetilde{w} \in \mathbb{R}^{(m+l+N+2n)} \middle| \widetilde{w} = \sum_{i=1}^{m} \sum_{\widetilde{p}' \in \Delta_i} \widetilde{w} \left(\delta^{(i)} \right) + \right. \\ \left. + \left((\underbrace{O_1, \ldots, O}_{j=1}) \left(-\sum_{j=1}^{m} x^{(j)} \right) \left(\underbrace{O_1, \ldots, O}_{N} \right) \left(u_1(x^{(i)}, \ldots, u_n(x^{(n)}M_1, \ldots, 1) \right) \right. \\ \left. \widetilde{w} \left(\delta^{(i)} \right) \in \widetilde{W}_i \left(\delta^{(i)} \right), \quad i = 1, \ldots, m; \quad \sum_{i=1}^{m} y \left(\delta^{(i)} \right) + \sum_{j} w^{(j)} \right\} \\ \geqslant \sum_{i=1}^{m} x^{(j)}; \quad x^{(j)} \geqslant 0, \quad j = 1, \ldots, n \right\},$$

$$\widetilde{W}^{*,j} = \text{Odosbayeerre для заминутой выпуклой конической оболочки множества } \widetilde{W}$$

Сформируем вектор μ (двойственных переменных) размерности m+l+N+2n, $\mu=(\mu_1,...,\mu_m,\bar{\rho},\bar{R}, d_2,...,d_n, V_2,...,V_n)$. Здесь $\bar{\rho}$ и $\bar{\tau}$ взяты из рассматриваемого состояния равновесия $\bar{U},\ \mu_i=\bar{\rho}\,\bar{g}^{(i)}+\bar{\pi}\,\bar{I}^{(i)},\ i=1,...,m$. Векторы ∞ и γ определены следующим образом. По определению состояния равновесия.

$$\begin{array}{c} u_{j}(\bar{x}^{(j)}) = max \quad u_{j}(x) \\ x\bar{p} \leq \mathcal{D}_{j}(\bar{y}^{(i)}, \bar{f}^{(i)}, ..., \bar{y}^{(m)}, \bar{p}, \bar{\pi}) + w^{(j)}\bar{p}, \\ x \geq 0 \end{array}$$

т.е. задача отыскания $\bar{x}^{(j)}$ представляет собой задачу выпукло — го программирования. По теореме о характеристике задачи выпуклого программирования (см., например, [2]), существуют такие множители $\mathcal{L}_j \geq \mathcal{O}, \quad \mathcal{V}_j \geq \mathcal{O}$, что

 $\alpha_j u_j(\alpha) - \alpha \bar{p} - v_j \le 0$ (4.6) для всех $\alpha \ge 0$ и данное неравенство обращается в равенство

дия всех x>0 и данное неравенство обращается в равенство на $x=\bar{x}^{(j)}$.

Покажем, что вектор μ определяет гиперплоскость, опорную к конусу \widetilde{W}^* в точке $\widetilde{\widetilde{w}} = (-1, ..., -1, \sum_i w^{(i)}, \sum_i f^{(i)}, u_i(\widetilde{x}^{(i)}), u_i(\widetilde{x}^{(i)}), \ldots, -1)$, т.е.

$$\mu \widetilde{w} < 0, \quad \widetilde{w} = \widetilde{W}^*, \quad \mu \overline{\widetilde{w}} = 0. \tag{4.7}$$

Действительно, по определению числа μ_i и по определению состояния равновесия модели M N, имеем $\psi \bar{\rho} + i \bar{\alpha} < \mu_i$ для $(\psi, f) \in Z$ ($\delta^{(i)}$), $\delta^{(i)} \in \Delta_i$ и $\bar{y}^{(i)} \bar{\rho} + \bar{i}^{(i)} \bar{\alpha} = \mu_i$, i=1,...,m. Отсюда, учитывая еще соотношение (4.6), получаем, что для какдого слагаемого $\bar{\omega}'$ вектора $\bar{\omega}'$ в выражении в фигурных смобках соотношения (4.5) $\bar{\omega}' \mu < 0$. Следовательно, $\bar{\omega}' \mu < 0$ для $\bar{\omega} \in W$, а также для $\bar{\omega}' \in W$. Для точки $\bar{\omega}'$, по определению, выполняется $\bar{\omega}' \mu = 0$. Из соотношений (4.7) почти непосредственно вытекает утверждение теоремы. Действительно, предположем противное, т.е. что найдется вектор ($\hat{\omega}^{(u)}$), $\hat{\omega}^{(u)}$, $\hat{\omega}^{(u)}$), удовлетворяющий условиям (4.1) – (4.3), и

$$\sum_{j} \omega_{j} (\hat{x}^{(j)}) + \sum_{i} \bar{\pi} \hat{p}^{(i)} > \sum_{i} \omega_{j} u_{j} (\bar{x}^{(j)}) + \sum_{i} \bar{\pi} \bar{p}^{(i)}$$
 (4.8) В силу соотношений (4.1) – (4.3) точка

 $\hat{\vec{w}} = (-1, ..., -1, \sum_{i} \vec{w}^{(j)}, \sum_{i} \hat{\vec{\mu}}^{(i)}, u_{i}(\hat{x}^{(i)}), ..., u_{n}(\hat{x}^{(n)}), -1, ..., -1)$ принадлежит множеству $\hat{\vec{w}}^{\mu}$. Следовательно, должно онть $\hat{\vec{w}}_{\mu} < 0$ однако соотношение $\hat{\vec{w}}_{\mu} = 0$ и неравенство (4.8) в совокущности дают $\hat{\vec{w}}_{\mu} > 0$. Ланное противоречие завершает доказатель — ство теоремы.

Благодаря тому, что в задаче (4.1) - (4.4) целевая функция имеет дополнительное слагаемое πf по сравнению с целе — вой функцией задачи (2.2) - (2.4), состояние равновесия модели MN хотя и обладает экстремальными свойствами согласно теореме 4, может тем не менее не доставлять решения задаче мажения суммарной полезности. Легко привести пример тажого состояния равновесия. Роль и влияние добавочного слагаемого проясняется с помощью теоремы 5, представляющей собой в определенном смысле обратную к теореме 4.

Подобно тому, как задаче (Δ) была сопоставлена схема (2.7), задаче (4.1) — (4.4) сопоставим схему (4.9). Схема (4.9) определяет сформулированную в § 2 задачу (G, π) , если совомунность всех производителей модели M N считать одним производителем, а совокупность всех потребителей — одним потребителем с целевой функцией $\sum \omega_i \omega_i$.

Будем называть вейтори \mathscr{L} и $\mathscr{\pi}$, входящие в определение целевой функции (4.4), согласованными, если решение задачи (4.1) – (4.4) является одновременно и решением соответст—

вующей задачи (G,π) при $G=\overline{g}S$, где \widetilde{g} взято из решения задачи (4.1) – (4.4). Напомним, что по теореме I согласованные векторы ω,π существуют.

согласованные векторы \mathcal{L} , \mathcal{R} существуют.

ТЕОРЕМА 5. Пусть $\overline{v} = (\overline{y}^{(1)}, \overline{f}^{(2)}, \dots, \overline{y}^{(m)}, \overline{f}^{(m)}, \overline{x}^{(2)}, \dots, \overline{x}^{(m)})$ представляет собой решение задачи (4.1) — (4.4) при заданных согласо—
ванных векторах \mathcal{L} и \mathcal{R}^* . Тогда найдутся (линейные) функции распределения доходов $\mathcal{D}_1, \dots, \mathcal{D}_{n+2}$, векторы потребления масштабов нововве—
дений $\overline{g}^{(2)}, \dots, \overline{g}^{(2)}$ и цены $\overline{\rho}$ и $\overline{\mathcal{R}}$ такие, что \overline{v} вместе с $\overline{g}^{(2)}, \dots, \overline{g}^{(2)}, \overline{\rho}$ и $\overline{\mathcal{R}}$ оказывается состоянием равновесия модели \mathcal{M} с данными функциями $\mathcal{D}_1, \dots, \mathcal{D}_{n+2}$. ДОКАЗАТЕЛЬСТВО. Пусть $\overline{\delta} = (\overline{\delta}^{(2)}, \dots, \overline{\delta}^{(m)})$ — план

ДОКАЗАТЕЛЬСТВО. Пусть $\bar{\delta} = (\bar{\delta}^{(0)}, \dots, \bar{\delta}^{(m)})$ — план нововведений, на котором реализуется решение $\bar{\sigma}$. Характеристические (двойственные) переменные для решения задачи $(\bar{\delta})$ обозначим через $\rho = (\rho^A, \rho^{(1)}, \dots, \rho^{(m)})$. Здесь вектор ρ^A соответствует неравенствам $z^A(\bar{\delta}) + g(\bar{\delta}) \widetilde{A}(\bar{\delta}) + hA + \sum_{i} w^{(i)} > \sum_{i} x^{(i)}$, т.е. представляет собой цени на общие для всей системы продукты, векторы $\rho^{m,l}$ относятся к неравенствам $g(\bar{\delta}) \widetilde{\Phi}(\bar{\delta}) + h\Phi > z^{m,l} (\bar{\delta}^{(i)})$,

т.е. являются ценами на внутренние для соответствующих производителей продукти. Отметим, что согласно теореме двойствен — ности для задачи линейного программирования для характеристических цен ρ выполнено соотношение $\alpha^{\kappa, s} \rho + \pi^{\kappa} = 0$ для тех нововведений κ , для которых $\tilde{B}_{\kappa} = 1$, и для тех способов S , создаваемых данным нововведением κ , которые входят в решение с положительной интенсивностью. Подобно тому, как это было сделано при доказательстве предложения 3, внчислим для данных ρ внутренние цены нововведений $\tilde{\pi}$, цены на ресурсы $\hat{\rho}, \tilde{\rho}$ и вектор ν так, чтобы совокупный вектор цен $(\nu, \hat{\rho}, \tilde{\rho}, \tilde{\sigma}, \pi, \rho, \pi^*)$ был характеристическим для задачи внпуклого программирования вида (4.9), у которой $G = \tilde{G} S = \tilde{G}$. А именно положим $\nu_j = \mathcal{L}_{i} u_{i} (\bar{x}^{(j)} - \bar{x}^{(j)} \hat{\rho}^{\kappa}, j = 1,...,n$; $\hat{\rho} = \tilde{\rho} = \rho$, $\tilde{\pi}_{\kappa} = b^{(\kappa)} \rho / \tilde{G}_{\kappa}$ для тех κ , у которых $\tilde{G}_{\kappa} > 0$. Для тех κ , для которых $\tilde{G}_{\kappa} = 0$, $\tilde{\pi}_{\kappa} = max \alpha x p + \pi x + 1$, если $max \alpha x^{\kappa s} \rho + \pi x^{\kappa} > 0$, и $\tilde{\pi}_{\kappa} = 0$ —в противном случае. Здесь $\alpha^{\kappa s}$ — строка, составленная из соответствующих строк мат—

Схема (4.9)

	ν		pº0	ρω	ã"	pro	pa)	7500	7w	إصعم	ô~	ĵ/m	7m	07.0	pA	200	Z4	2~9		_ L
!				<u>-</u>			<u> </u>	L!		<u> </u>		<u> </u>			<u>'</u>	<u> </u>			_	
	1		Г	Ba	GW	Г	Г								Г					
	i		-	۲	-3 ²⁷	ã d									$\widetilde{A}^{(i)}$	Sas	-	\dashv		
					,	φű									A ^{cs})			\dashv		
			-I	I		2									-			\dashv		
			- <i>I</i>	Ħ		I'									I''	-		\vdash		
┢	 		-	Ш		_	h	B ⁽²⁾	g ⁽²⁾			·• · -			-	H	-		\dashv	
•															$\widetilde{A}^{(2)}$		SEE		۱ ا	
ı	:						Н		-	per					Aa		_	Н		
							-I	I		\exists								H		
							-J			7'					7"			Н		
<u> </u>	٠.	اــــا			•		ات.												•	_
			Γ							·	_ _	200	G ^(me)							
										-		υ	5	$\hat{\phi}^{m}$	A			Simi		
										}	-		-	P"		\vdash		7		
										}	- <u>I</u>	Ī	\vdash	7	4		-			
										-	<u>-</u> I	•	\vdash	I'	I"	-	-		ĺ	
-1							Γ-			-			!	1	-x4			-	4,00	-
-	-1		<u> </u>				-			-					-260	-		\vdash		ų,
-	Ē	-1					 			\dashv					200		\vdash		\vdash	۲
لـــا		نـــَــا					<u> </u>	,	/ /						<u> </u>	<u></u>	L	L		L
	_,	_/	_00		()		المار				D ^(m)	_	_		5.1	f ^(d)	102	gone	100	_
-1	-1	-1	-Re		0		-R ⁴⁸			-	R ^{cm)}				£10	fW	f12	pore!	m	

риц \widetilde{A} и $\widetilde{\mathcal{P}}_i$, относящихся к нововведению K и способу S, порождаемому этим нововведением. Максимум берется по всем способам, порождаемым нововведением K. Учитывая, что p-характеристический вектор для задачи $(\widetilde{\delta})$, непосредственно проверяется, что $(\mathcal{V}, p, p, \widetilde{\mathcal{R}}, p, \mathcal{R}^*, \mathcal{L})$ — характеристический вектор задачи (4.9), т.е. скалярное произведение этого вектора на любую строку матрицы схемы (4.9) не больше нуля, а для строк, формирующих решение $\widetilde{\mathcal{T}}$, это произведение строго равно нулю.

Вычислив скалярные произведения полученного характеристического вектора на способы (строки матрицы схемы (4.9)), относящиеся к произвольно выбранному производителю $\dot{\nu}$, умножив их на соответствующие интенсивности способов при решении $\bar{\sigma}$ и сложив все вместе, получим соотношение

 $(\bar{\varphi}^{(i)}, \bar{y}^{(i)}) \rho + \bar{f}^{(i)} \pi^* = R^{(i)} \rho, \quad i = 1, ..., m.$ (4.10)

Рассмотрим теперь для произвольного i задачу максимизации функции $(\varphi^{(i)}, \varphi^{(i)}) \rho$ при ограничениях: $-\mathcal{E}^{(i)} \mathcal{B} + \widetilde{\mathcal{E}}^{(i)} \geqslant 0$,

$$\varphi^{(i)} = z^{(i)\Phi} + g^{(i)}\widetilde{\varphi}^{(i)} + h^{(i)}\varphi^{(i)}, \quad y^{(i)} = z^{(i)A} + g^{(i)}\widetilde{A}^{(i)} + h^{(i)}A,$$
 $z^{(i)} = z^{(i)A} + g^{(i)}\widetilde{A}^{(i)} + h^{(i)}A,$
 $z^{(i)} = z^{(i)A} + g^{(i)}A,$
 $z^{(i)} = z^{(i)A} + g^{(i)A}A,$
 $z^{(i)} = z^{(i)A}A,$
 $z^{(i)} = z^{($

Соответствующая задача линейного программирования представля - ется в виде следующей схемы:

	ρ̂	Ĩ	T	Í	
8		- B	G		
9			5	Pop +A A+C	(4 77)
h			<u> </u>	$ \Phi_{\rho^{\oplus}} + A_{\rho^{\Lambda}} + S_{\sigma^{\Lambda}} $ $ -\Phi_{\rho^{\oplus}} + A_{\rho^{\Lambda}} $	(4.II)
ĩ	-1	+ I		- P P	
2	-I			p	
	- <i>R</i>	0	0	maI	

Здесь в обозначениях опущан индекс i. Согласно теореме І найдется такой вектор $\hat{\pi}$, что $(\hat{\delta}^{(i)},\hat{\beta}^{(i)},\hat{h}^{(i)},\hat{z}^{(i)})$ $\hat{z}^{(i)}$ оказывается решением задачи линейного программирования с ограничениями вида (4.II) при $\hat{G} = \hat{G}^{(i)} S = \hat{G}$ и целевой функцией $\varphi^{(i)} p^{\mathcal{P}} + \varphi^{(i)} \pi^{\mathcal{R}} + f^{(i)} \hat{\pi}^{\mathcal{R}} + f^{(i)} \hat{\pi}^{\mathcal{R}}$. Здесь, как и выше, $\varphi^{(i)} = z^{(i)} + \varphi \hat{\Phi}^{(i)} + h^{(i)} \varphi^{(i)}$ $\varphi^{(i)} = z^{(i)A} + g^{(i)} \hat{A}^{(i)} + h^{(i)} \hat{A}^{(i)}$ $\varphi^{(i)} = g^{(i)} \hat{g}^{(i)}$ т.е. данная целевая функция отличается от целевой функции задачи (4.II) добавкой $f^{(i)} \hat{\pi}$. Вычислим непосредственно характеристические цени $(\hat{\rho}, \hat{\rho}, \pi, \hat{\pi})$ (двойственные переменные), соответствующие решению $(\hat{\delta}^{(i)}, \hat{\beta}^{(i)}, \hat{\lambda}^{(i)}, \hat{z}^{(i)})$ данной задачи линейного программирования.

задачи линейного программирования. Положим $\hat{\rho} = \tilde{\rho} = p$, $\pi_{\kappa} = \hat{\pi}_{\kappa} = \frac{b^{(\kappa)}}{p}/\hat{G}_{\kappa}$, если $\hat{G}_{\kappa} > 0$. Для тех κ , для которых $\hat{G}_{\kappa} = 0$, $\pi_{\kappa} = m_{\alpha} \propto \alpha^{\kappa s} p + \pi_{\kappa}^* + 1$, $\hat{\pi}_{\kappa} = 0$, если $m_{\alpha} \propto \alpha^{\kappa s} p + \pi_{\kappa}^* > 0$, и $\pi_{\kappa} = \hat{\pi}_{\kappa} = 0$ —в противном случае. Непосредственно проверяется, как это здесь уже неоднократно проделывалось, что вычисленные таким образом цени $(p, p, \pi, \hat{\pi})$ являются характеристическими для рассматриваемой задачи линейного программирования. Следовательно, имеет место соотношение

 $\begin{array}{c} R^{(i)} \rho = (\hat{\varphi}^{(i)}, \hat{y}^{(i)}) \rho + \hat{f}^{(i)} \pi^* + \hat{f} \hat{\pi} \,. \\ \text{Сравнивая это соотношение с (4.10) и учитывая, что } (\hat{\varphi}^{(i)}, \hat{y}^{(i)}) - \\ \text{решение задачи } (p, \pi^*) \text{ и } \hat{f}^{(i)} \hat{\pi} \geqslant 0 \quad \text{, получаем} \\ (\bar{\varphi}^{(i)}, \bar{y}^{(i)}) \rho + \bar{f}^{(i)} \pi^* = \max_{(\varphi^{(i)}, y^{(i)}) \in W_i} (\varphi^{(i)}, y^{(i)}, f^{(i)}) \in W_i \end{array}$

Покажем теперь, что $\varphi^{(i)} \rho^{\Phi} = 0$. Действительно, по определению, $\bar{\varphi}^{(i)} = z^{(i)\Phi}(\bar{\delta}) + \bar{g}(\bar{\delta}) \, \bar{\Phi}^{(i)}(\bar{\delta}) + \bar{h} \, \bar{Q}$. Соотношение (4.9) дает $\bar{\varphi}^{(i)} > 0$. А поскольку ρ - характеристические цення в задаче $(\bar{\delta})$, то неравенство $\bar{\varphi}^{(i)} > 0$ влечет $\rho^{\Phi}_{\kappa} = 0$. Следовательно, $\bar{\varphi}^{(i)} \rho^{\Phi} = 0$. В силу этого равенства, а также с учетом того, что

 $V_i = Y_i \times F_i = \{(y^{(i)}, f^{(i)}) | (\varphi^{(i)}, y^{(i)}, f^{(i)}) \in W_i, \varphi^{(i)} > 0\},$ из соотношения (4.12) непосредственно получается необходимое для доказательства теоремы соотношение (3.8) из определения состояния равновесия, где в качестве $\bar{\rho}$ взято $\rho^{(i)}$.

Обратимся теперь к остальным соотношениям, определяющим состояние равновесия. Неравенства (3.6) для \bar{v} выполнены по определению. Функции распределения доходов $\mathcal{D}_{i_1}, \dots, \mathcal{D}_{i_{n+2}}$ определим в форме $\mathcal{D}_{i_1}(y^{(d)}, f^{(d)}, \dots, y^{(m)}, \bar{\rho}, \pi) = \sum_{i=1}^{n} \theta_{i_1} y^{(i)} \bar{\rho}$ для $j=1,\dots,n$ и в форме $\mathcal{D}_{i_1}(y^{(d)}, f^{(d)}, \dots, y^{(m)}, f^{(m)}, \bar{\rho}, \pi) =$

$$= \sum_{i=1}^{m} \Theta_{ij} f^{(i)} \pi \qquad \text{IMB } j = m+1, ..., m+z, \qquad (4.13)$$

гле

$$\theta_{ij} \ge 0, \sum_{j=1}^{n} \theta_{ij} = 1, \sum_{j=n+1}^{n+2} \theta_{ij} = 1, i = 1, ..., m.$$

Коэффициенты $\{\theta_{i,j}\}$, i=1,...,m; j=1,...,n+z, а также векторы потребления масштабов использования нововведений $(\bar{g}^{(d)},...,\bar{g}^{(j-n)})$, j=n+1,...,n+z, определяются (неоднозначно) из соотношений (4.13) и уравнений:

$$\begin{split} &\sum_{i=1}^{m} \Theta_{ij} \, \bar{g}^{(i)} \bar{\rho} = \bar{x}^{(j)} \bar{\rho}, \qquad j = 1, \dots, n, \\ &\sum_{i=1}^{m} \Theta_{ij} \, \bar{f}^{(i)} \, \pi = \bar{g}^{(j-n)} \, \pi, \ j = n+1, \dots, n+r, \\ &\sum_{i=1}^{m} \, \bar{f}^{(i)} = \sum_{j=n+1}^{n+r} \, \bar{g}^{(j-n)}, \\ &\bar{g}^{(i)}, \dots, \, \bar{g}^{(n+r)} \, \geqslant 0. \end{split}$$

Тогда соотношения (3.7) и (3.10) также оказываются выполненными по определению. И наконец, соотношение (3.9) имеет место в силу того, что $\bar{\rho}$ - характеристические цени для задачи выпуклого программирования, предотавленной на схеме (4.9). Доказательство теоремы завершается.

§ 5. Об экономической интерпретации факта существования равновесия модели с нововведениями

Экономическое равновесие в классическом случае означает существование такой ситуации, когда интереси всех частей экономической системы (потребителей и производителей) оказываются согласованными. В силу теоремы эквивалентности (см. напри мер,[2, § 19) между состояниями равновесия и точками, лежащи ми на границе Парето, при любом глобальном критерии оптимальности гарантируется существование такой ситуации, при которой частные интересы производителей и потребителей согласуются с общими, воплощенными в данном глобальном критерии оптимальности с помощью чисто экономических средств.

Теоремы I, 3-5 распространяют этот вывод на случай наличия нововведений. Однако вопрос состоит в том, какой ценой это достигается. Рассмотрим полученные результаты более детально.

Теорема I показывает, что в глобальной оптимизационной задаче, учитывающей нововведения, существуют оптимальные оценки, имеющие ту же природу, что и оценки задачи линейного программирования, хотя исходная задача содержит булеви переменные. Однако при этом с необходимостью появляется новое образование: оптимальные оценки масштабов внедрения нововведений. Оценок продуктов и ресурсов оказывается недостаточно, как показывает пример I.

Пример I вместе с теоремами I, 3-5 приводит к следующе - му выводу: в общем случае не существует таких цен на продукты и ресурсы, при которых производители были бы заинтересованы в производстве и внедрении нововведений, а потребители были бы заинтересованы в использовании результатов этих нововведений.

Ввеление же оценок объемов использования нововведений позволяет изменить ситуацию. Экономическое равновесие существует, если в результат производственной деятельности производителей включается и экономически оценивается сам факт реализации вовведений с учетом масштаба их последующего внедрения. Таким образом, в экономической системе производятся продукты в обычном смысле слова и "продукты", представляющие собой нововведения. Количество "продуктов" измеряется масштабом их внедрения. Экономическую оценку (положительные цены) получают те произведенные блага, которые признаются обществом, т.е. находят своих потребителей. Потребителями обычных продуктов являются обычные потребители, а вот кто является потребителем "продуктов" (нововведений)? Это вопрос экономической интерпретации. В определении понятия экономического равновесия для модели MN просто постулируется наличие потребителей нововведений (потребители с номерами $n+1,\ldots,n+2$ и соответствующими функциями распределения доходов $\mathcal{D}_{n+1}, \ldots, \mathcal{D}_{n+2}$). Их экономическая природа, обоснованность реальности их существования - это особые вопросы. здесь не рассматриваемые. Если считать, что носителем общей цели общества в целом является государство. можно принять, что государство и должно выступать в роли потребителя нововведений. Однако в реальной экономической систе ме эту функцию государство должно поручить конкретным органам, которые, вообще говоря, могут иметь свои локальные интересы. В

данной работе эта проблема только констатируется. Конкретное ее изучение охватывает многие аспекты экономической организа ции, ставит ряд трудных проблем и приводит к далеко идущим выволам. Для того чтобы проидлюстрировать, о каких проблемах выводах может идти речь, представим себе, например, что бителями нововведений являются министерства и Государственный комитет по науке и технике. Тогда в этих организациях быть создан аппарат для "покупки" нововведений. Порядок его формирования определяет функции $\mathcal{Q}_1, \ldots, \mathcal{Q}_{n+1}$ ряющие закону Вальраса, а порядок расходования - целевые функшии $\pi^{(n+1)}, \ldots, \pi^{(n+t)}$. Не исключено, что при этом общая стоимость произведенного в системе общественного продукта (стоимость продукции плюс стоимость нововредений) возрастет по сравнению со стоимостью, подсчитанной в рамках действующей практики ценообразования. Насколько существенным может быть увеличение общей стоимости - судить априори затруднительно. Оно определяется увеличением прибыли производителей, а последняя, в свою очередь, определяется стоимостью затраченных ресурсов. Возрастание же стоимости затрачиваемых ресурсов возможно за счет повышенной, по сравнению с действующей практикой, ресурсов, связанных с созданием и внедрением нововведений. Система ценообразования должна будет включать в себя методику и механизм образования цен на нововведения. При этом возникают проблемы, так сказать, технического порядка: что является единицами нововведений, в которых должен измеряться соответствуюший масштаб внедрения, как подсчитывать этот масштаб внедрения, особенно в динамическом случае, и т.п.

Литература

- БЕРЖ К. Общая теория игр нескольких лиц. М., Физматгиз, 1961.
- 2. МАКАРОВ В.Л., РУЕМНОВ А.М. Математическая теория экономической динамики и равновесия. М., "Наука", 1973.

Поступила в ред.-изд. отдел 25. У1. 1976 г.