Выпуклый анализ

УДК 513.80

О СУЩЕСТВЕННОЙ ОТДЕЛИМОСТИ КОНУСОВ В ЛИНЕЙНЫХ ТОПОЛОГИЧЕСКИХ ПРОСТРАНСТВАХ

М.К.Гавурин

Пусть X-локельно выпуклое линейное топологическое пространство нед полем действительных чисел. $\mathscr S$ и Q-выпуклые кончен в X , причем

Будем говорить, что конус \mathscr{D} существенно отв и м от конуса \mathscr{Q} , если эти два конуса отделимы такой гиперплоскостью H, что $\mathscr{P}(H\neq\emptyset)$. Если конус \mathscr{P}_{-} порождающий ($\mathscr{P}_{-}\mathscr{P}_{-}X$), существенная отделимость совпадает с обычной.

Введем в X полуупорядочение, определяемое конусом $\mathcal P$: для x_i , $x_2 \in X$ будем говорить, что x_i с ледуе т за Х,

$$x_1 \succ x_2$$

если $x_1 - x_2 \in \mathcal{G}$. Обозначим \mathcal{E}_x множество элементов X , мажорируемых элементом x :

$$\mathcal{E}_{x} = \{u: x \succ u\} \equiv \{u: x - u \in \mathcal{P}\}.$$

Элемент $x \in \mathcal{G}$ навовем п с е в д о е д и в и ц е й в \mathcal{G} , если множество $\bigcup_{k=1}^{n} \mathcal{E}_{kx}$ плотно в \mathcal{G} . Очевидно, вместе с x_o псевдоединицей в $\mathcal P$ будет и каждый элемент вида \mathcal{X}_o ($\mathcal{A} > \mathcal{O}$), а также вида $x_o + p$, где $p \in \mathcal{P}$, так что конус ($\mathcal{X}_o + p : \mathcal{A} > \mathcal{O}$, $p \in \mathcal{P}$) состоит из псевдоединиц. Таким образом, если в \mathcal{P} имеются псевдоединици, то они образуют плотное в \mathcal{P} множество. Ясно также, что если $\left\{x_k\right\}_{k=0}^{\infty}$ возрастающая последовательность элементов X, причем x_o есть псевдоединица в \mathcal{P} , то все элементы этой последовательности являются псевдоединицами в \mathcal{P} .

Если X-банахово пространство и \mathcal{P} содержит счетное плотное в \mathcal{P} множество $\{\xi_n\}_{n=1}$ ($\xi_n \neq 0$), то существует псевдоединица в \mathcal{P} :

$$x_o = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\xi_n}{\|\xi_n\|}.$$

Действительно, $\xi_n \in \mathcal{E}_{2^n \parallel \xi_n \parallel \mathfrak{X}_o}$ ($n=1,2,\ldots$) и $\{\xi_n\}_{n=1}^\infty$ $\subset \bigcup_{k=1}^\infty \mathcal{E}_{\kappa,\mathfrak{X}_o}$, так что множество справа является плотным в \mathcal{F} . Будем говорить, что последовательность $\{x_n\}_{n=1}^\infty$ элементов X неограниченно приближается к \mathcal{Q} , если для любой окрестности нуля U все члены последовательности, за исключением конечного числа, принадлежат \mathcal{Q}^+U .

Рассмотрим следующие три утверждения: I. У существенно отделим от ...

П. Существуют такой элемент $\rho_o \in \mathcal{D}$ и такая выпуклая окрестность нуля U , что

$$(p_0 + \mathcal{P} + U) \cap \mathcal{U} = \emptyset. \tag{1}$$

ш. Не существует возрастающей последовательности псездоединиц в \mathcal{G} , неограниченно приближающейся к \mathcal{Q} .

теорема I. Утверждения I и П квивалентны.

ДОКАЗАТЕЛЬСТВО. Пусть справедливо утверждение 1 и у есть такой элемент X^* , что гиперплоскость $H=\{u:(u,y)=0\}$ отделяет $\mathcal P$ и $\mathcal Q$, причем $\mathcal P \setminus H \neq \emptyset$. Примем для определенности, что $(\rho,y)>0$ для $\rho\in\mathcal P$. Выберем $\rho_0\in\mathcal P \setminus H$ так, что $(\rho_0,y)>0$. Найдем такую выпуклую окрестность нуля $\mathcal Q$, что $(\rho_0+x,y)>0$ для $x\in\mathcal Q$. Тогда для любого $\rho\in\mathcal P$ справедливо неравенство $(\rho_0+\rho+x,y)>0$, в то время, как для любого $q\in\mathcal Q$ $(\rho_0,y)<0$. Этим доказано, что

 $\rho_0 + \mathcal{D} + U > 0$ при указанном выборе ρ_0 и U , т.е. установлена справедливость утверждения Π .

Предположим теперь справедливость утверждения Π , так что при некоторых ρ_o и U имеет место соотношение (1). Не наругая общности, можно принять, что U = U.

Положим

$$\mathcal{G}_{1}^{2}=\{\rho+\tau(\rho_{0}+x):\rho\in\mathcal{P},\ x\in\mathcal{U},\ \tau>0\}.$$

силу випуклости \mathcal{P} и \mathcal{U} конус \mathcal{P}_1 является выпуклым. Он телесси, так как любой элемент вида ρ + T ρ . (при $\mathsf{T} > \mathsf{O}$) содержится в \mathcal{P}_1 вместе со своей окрестностью ρ + T ρ . Докажем, что

$$\mathcal{P}_{i} \cap \mathcal{Q} \subset \{0\}$$
.

Допустим, рассуждая от противного, что элемент $g\in Q$ представим в форме

$$q = p + \tau(p_0 + x) \qquad (p \in \mathcal{P}, x \in U, \tau > 0).$$
Echn $\tau = 0$, to $q = p \in \mathcal{P}$ where $\tau > 0$, to

$$\frac{1}{t}q = p_0 + \frac{1}{t}p + x \in p_0 + \mathcal{D} + \mathcal{D}$$

и (1) неверно вопреки предположению. Соотношение (2) доказано. Выпуклый телесный конус \mathcal{P}_1 отделим от выпуклого конуса \mathcal{Q} некоторой гиперплоскостью $H=\{u:(u,y)=0\}$. Пусть для определенности (u,y)>0 для $u\in\mathcal{P}_1$. Так как $\mathcal{P}\subset\mathcal{P}_1$, то H отделнот конусы \mathcal{P} и \mathcal{Q} . Осталось показать, что \mathcal{P} не лежит в H. Допустим противное: $\mathcal{P}\subset H$. Зафиксируем $\rho\in\mathcal{P}$ и возьмем любой элемент $x\in U$. Тогда элемент вида $u=\rho+1$ $\rho_0\pm x$ принадлежит \mathcal{P}_1 , так что $0<(u,y)=\pm(x,y)$. Следовательно, (x,y)=0. Это значит, что $U\subset H$, что невозможно.

Доказана справедливость соотношения І.

ТЕОРЕМА 2. Если X — пространство со четной базой окрестностей ну— ля и в конусе $\mathcal F$ имеется псевдо-единица (в частности, если X—сепарабельное банахово пространство), то утверждения I и шэквивалентны.

ДОКАЗАТЕЛЬСТВО. В силу теоремы І достаточно установить эквивалентность П ...

Пусть справедливо соотношение П и р_о и U имеют указанный в нем смысл. Допустим, рассулдая от противного, что утверждение u неверно, т.е. что существует возрастающая последовательность псевдоединиц в $\mathcal{P}\{x_n\}_{n=0}^\infty$, неограниченно приближающаяся к Q

Так как $extit{\emph{x}_o}$ есть псевдоединица в $extit{\mathscr{P}}$, то

$$(p_o + \frac{1}{2}U) \cap \bigcup_{n=1}^{\infty} S_{nx_o} \neq \emptyset.$$

Пусть \mathcal{U}_{-} точка из этого пересечения, т.е. существует такой HOMED Ko , 4TO

$$v \in (\rho_0 + \frac{1}{2} \bigcup) \setminus S_{\kappa_0 x_0}$$
.

Это значит. что

$$v = \mu_0 + \frac{1}{2} \xi \quad (\xi \in U), \quad \kappa_0 x_0 - v \in \mathcal{F}.$$

Для любого натурального ${\it N}$ имеет место представление

$$\kappa_{o} x_{n} = v + (\kappa_{o} x_{o} - v) + \kappa_{o} \sum_{i=0}^{n-1} (x_{i+1} - x_{i}) \equiv v + \mu_{n} =$$

$$= \mu_{o} + \mu_{n} + \frac{1}{2} \varepsilon \quad (\mu_{n} \in \mathcal{I}).$$

С другой стороны, для n достаточно большого $x_n \in Q - \frac{1}{2K_o} U$ так что $\kappa_o x_n = q_n - \frac{1}{2} \, \xi_n$ ($q_n \in Q$, $\xi_n \in U$). Таким образом,

$$\rho_{o} + \rho_{n} + \frac{1}{2} (\xi + \xi_{n}) - \kappa_{o} x_{n} + \frac{1}{2} \xi_{n} - q_{n} \in Q$$
.

 $\rho_o + \rho_n + \frac{1}{2} (\xi + \xi_n) = \kappa_o x_n + \frac{1}{2} \xi_n = q_n \in Q.$ Оказалось, что $q_n \in (\rho_o + \mathcal{D} + U) \cap Q$ вопреки допущению пустоте ...ножества справа.

Установим теперь, что из 🛮 следует II. Допустим с

целью, что Π неверно и докажем, что неверно Π . Пусть $\left\{-\bigcup_{\tau}\right\}_{\tau=1}^\infty$ есть счетная фундаментальная система окрестностей нуля, причек $U_1 = U_2 = \dots$. Пусть, далее, $x_s = 1$ произвольная псевдоединица в \mathcal{P} и уже построены x_1, \dots, x_{s-1} , причем

$$x_o \prec x_i \prec \cdots \prec x_{\kappa-1} \in \mathcal{P}$$
.

Tak kak $(x_{k-1} + \mathcal{P} - U_k) \cap Q \neq \emptyset$ (B chay предположения о том,

что Π неверно), то найдется элемент $\bigcap_{\kappa} \in \mathcal{G}$, так что $x_{\kappa} = x_{\kappa-1} + \bigcap_{\kappa} \in \mathcal{G} + \bigcup_{\kappa}$. При этом $x_{\kappa} \in \mathcal{G}$, $x_{\kappa} \succ x_{\kappa-1}$. Для любого m и $\kappa > m$ будет $x_{\kappa} \in \mathcal{Q} + \bigcup_{m}$. Таким образом, $\{x_{\kappa}\}_{\kappa=0}^{\infty}$ есть возрастающая последовательность псевдоединиц, неограниченно приближающаяся κ \mathcal{Q} .

Установлено, что Ш неверно, и завершено доказательство теоремы.

ЗАМЕЧАНИЕ. Предположение о наличии счетной базы окрестностей нуля использовано только во второй части доказательства, так что соотношение $\Pi \Longrightarrow \Box$ справедливо и без этого предположения.

В дальнейшем роль X будет играть пространство функций, заданных на [0,1], роль $\mathcal P$ — конус неотрицательных функций из X. В качестве $\mathcal C$ избирается некоторый конус, такой что $\mathcal P \cap \mathcal Q = \{0\}$. Мы заинтересованы в примере отсутствия отделимости, и потому пространство X избирается так, чтобы конус $\mathcal P$ не был телесным. Этому условию удовлетворяют, например, пространства $\mathcal L_{\rho}$ [0,1] ($\rho \geq 1$) и $\mathcal C_{o}$ [0,1] — пространство непрерывных рункций, аннулирующихся в точке 0. В указанных пространствах единиц нет. Псевдоединицей в $\mathcal L_{\rho}$ [0,1] служит любая положительная π .в. функция, в $\mathcal C_{o}$ [0,1] — любая функция, положительная в [0,1].

Пример, который мы сейчас приведем, показывает возможность того, что неотделимыми являются два замкнутых конуса, пересечение которых состоит из точки $O^{-\frac{1}{2}}$?

ПРИМЕР. $X = L_2$ [0,1], \mathcal{P} — конус неотрицательных п.в. функций. Так как \mathcal{P} — порождающий конус (\mathcal{P} — \mathcal{P} =X), то \mathcal{P} не содержится ни в какой гиперплоскости. Следовательно, существенная отделимость \mathcal{P} от какого-либо конуса \mathcal{Q} равносильна отделимости \mathcal{P} и \mathcal{Q} .

Введем функции

$$w_{i}(t) = \begin{cases} -1, & 0 < t < \frac{1}{2^{i+1}}, \\ 1, & \frac{1}{2^{i+1}} < t < 1 - \frac{1}{2^{i+1}}, \\ 2, & 1 - \frac{1}{2^{i+1}} < t < 1, \end{cases}$$

^{*)} Это не первый пример такого рода (см.[1], стр.377, упр.166).

и возъмем в качестве O выпуклую коническую оболочку множества $\{w_i\}_{i=1}^\infty$. Так как при любых $\lambda_i > 0$ функция

$$\sum_{i=1}^{t} \lambda_{i} \dot{w}_{i}(t)$$

отрицательна в промежутке $0 < t < \frac{1}{2^{\frac{1}{2^{i+1}}}}$ (при условии $\sum_{i=1}^{2} \lambda_i > 0$), то $\Re \cap \widehat{Q} = \{0\}$

Система функций $\{w_i\}$ подобрана таким образом, что норма w_i (минус знак отрицательной части) мала, лишь когда i велико и, следовательно, велика норма $\|w_i\|$. Аналогичным свойством обладают все элементы Q, что показывает приводимая ниже лемма.

Рассмотрим произвольный элемент Q

$$x(t) = \sum_{j=1 \atop j=1}^{r} a_{j} w_{j}(t) \qquad (a_{j} \ge 0).$$

Tak kak ha npomemyrke $(2^{-i-1}, 2^{-i})$

$$w_j(b) = \begin{cases} -1, & j < i, \\ 1, & j > i, \end{cases}$$

Ŧ0

$$x(t) = -\sum_{j=1}^{t-1} a_j + \sum_{j=1}^{t} a_j = 2\sum_{j=1}^{t} a_j - \sum_{j=1}^{t} a_j \quad (2^{-t-1} < t < 2^{-t}). \quad (3)$$

 1° . Покажем, что для пары конусов \mathcal{D} и \mathcal{Q} не выполнено соотношение \mathcal{U} , так что эти конусы неотделимы существенно (и, следовательно, неотделимы).

Голожим

$$q_n(t) = \sum_{j=1}^n w_j(t) \qquad (n \text{ yerhoe}).$$

В силу формулы (3) на промежутке $(2^{-i-1}, 2^{-i})$ бу лет

$$q_n(t) = \begin{cases} 2(n-i+1)-n = n-2i+2, & i \le n, \\ -n, & i > n \end{cases}$$

Следовательно,

$$q_n(t) > 0$$
 $\lim_{n \to \infty} 2^{-\frac{n}{2}-1} < t < 1$,

$$-n < q_n(t) < 0$$
 ANS $0 < t < 2^{-\frac{n}{2}-1}$.

Введем функции

$$x_n(t) - max[q_n(t), 1], x_n \in \mathcal{P}.$$

Ясно, что x_n есть псевдоединица в \mathcal{P} . Докажем, что $x_{n+2}(t) > x_n(t)$. Действительно, на $(2^{-n-3}, \frac{1}{2}) \times x_{n+2}(t) - x_n(t) = w_{n+1}(t) + w_{n+2}(t) > 0$, а на $(0, 2^{-n-3}) \times x_{n+2}(t) = x_n(t) = 1$. Таким образом, $\{x_n\}$ есть возрастаривя последов

— $x_n (t) = 1$. Таким образом, $\{\infty_n\}$ есть возрастающая последовательность псевдоединиц в \mathcal{G} .

С другой стороны,
$$\frac{n}{2} - 1$$

$$\|x_n - q_n\|^2 = \int_0^2 (1 + |q_n|^2) dt < 2^{-\frac{n}{4}} (1 + n)^2 \rightarrow 0,$$

так что $\{x_n\}$ неограниченно приближается к Q . Установлено, что \mathbf{h} неверно.

20. Покажем теперь, что $\mathcal{P} \cap \bar{\mathcal{Q}} \subset \{0\}$ (конус \mathcal{P} замкнут, так что замыкать его нет нужды). Допустим, рассуждая от противного, что существуют элемент $x_o \in \mathcal{P}$, $x_o \neq 0$, и последовательность $\{x_a\}_{a=0}^{\infty} \subset \mathcal{Q}$, так что $x_a = \lim_{n \to \infty} x_n$.

тельность $\{x_n\}_{n=i}^\infty \subset \mathcal{Q}$, так что $x_o = \lim x_n$. Любой элемент $v = \sum_{i=1}^n \alpha_i \ w_i \in \mathcal{Q}$ сохраняет на $(\frac{1}{4}, \frac{3}{4})$ постоянное значение $\sum_{i=1}^n \alpha_i$. Каждая из функци: x_n постоянна на $(\frac{1}{4}, \frac{3}{4})$, и это же верно для функции x_o . Пусть

$$x_a(t) = d$$
 $(\frac{1}{4} < t < \frac{3}{4})$,

$$x_n(t) = \sum_{i=1}^{2n} a_i^n w_i(t)$$
 $(a_i^n \ge 0)$.

Тогда $d = \lim_{n \to \infty} \sum_{i=1}^{n} a_i^n$. Если би оказалось, что d = 0, т.е. $\sum_{i=1}^{n} u_i^n \to 0$, то, как нетрудно видеть, $x_n(t) \to 0$ п.в. и $x_o(t) = 0$ п.в., что противоречит предположению $x_o \neq 0$. Следовательно, $d \neq 0$, и, не нарушая общности, можно принять d = 1, $\sum_{i=1}^{n} a_i^n = 1$ ($n = 1, 2, \ldots$).

ЛЕММА. Пусть

$$x = \sum_{i=1}^{t} a_{i} w_{i}$$
, $a_{i} > 0$, $\sum_{i=1}^{t} a_{i} = 1$

и пусть x^- овначает ную часть x .

$$\|x^{-}\| > \frac{1}{36\sqrt{2}} \frac{1}{\|x\|}$$

MOKA SATE JIL CTBO.

$$\|x\|^2 > \int_{\frac{1}{4}}^{\frac{\pi}{4}} x^2 dt - \frac{1}{2} \left(\sum_{i=1}^{\nu} a_i \right)^2 - \frac{1}{2}$$

Далее, имеем для любого
$$\dot{v} \leq \dot{v}$$

$$\|x\|^2 \geqslant \sum_{\nu=t}^{\tau} \int_{t-2-\nu-1}^{t-2} x^2 dt > \sum_{\nu=t}^{t} \int_{t-2-\nu-1}^{t-2} \alpha_{\nu}^2 w_{\nu}^2 dt =$$

$$= \sum_{\nu=1}^{p} 2^{-\nu-2} 2^{2\nu} a_{\nu}^{2} = \frac{1}{4} \sum_{\nu=1}^{p} 2^{\nu} a_{\nu}^{2}.$$

Этсида известными приемами получается, что

$$\sum_{v=i}^{b} a_{v} < 2^{\frac{3}{4}} \|x\| 2^{-\frac{1}{2}i}$$

Пусть \dot{b}_o — первый индекс \dot{b} , для которого $0^{\frac{3}{4}} \| \mathbf{x} \| 2^{-\frac{1}{2}i} \le \frac{1}{3}$

Так как $2 \|x\| > \sqrt{2}$, то $i_o > 1$. Не нарушая общности, можно принять также, что $i_o < 7$. $-i_{o-1}$ -i

В силу формулы (3) на промежутие ($2^{-t_0-1}, 2^{-t_0}$) будет

$$x(\bar{b}) = \sum_{j=1}^{\nu} a_j w_j(\bar{b}) = -\sum_{j=1}^{i-1} a_j + \sum_{j=i}^{\nu} a_j = 2 \sum_{j=i}^{\nu} a_j - 1 < 2 \cdot 2^{\frac{3}{2}} \|x\| 2^{-\frac{1}{2}i_0} - 1 < -\frac{1}{3}.$$

Следовательно,

$$\|x^-\|^2 > \int_{0-i_0-1}^{2-i_0} (x^-)^2 dt > 2^{-i_0-1} \frac{1}{g}.$$

По определению i_o , справедливо неравенство

$$2^{\frac{3}{2}} \|x\| 2^{-\frac{1}{2}(i_{\circ}-1)} > \frac{1}{3}$$

так что

$$\|x^{-}\| > \frac{1}{3\sqrt{2}} 2^{-\frac{1}{2}i_0} > \frac{1}{3\sqrt{2}} \frac{1}{12} \frac{1}{\|x\|}$$
.

Лемма доказана.

Теперь уже легко привести к противоречию предположение о существовании элемента $x_o \in \mathcal{P}$, $x_o \neq 0$, и последовательности $\{x_n\}_{n=1}^\infty \subset \mathcal{Q}$, такой что $x_o = \lim x_n$, причем $x_n = \sum_{i=1}^n \alpha_i^a w_i^a$, $\sum_{i=1}^n \alpha_i^a = 1$. Действительно, в этом случае существует M > 0 , так что $\|x_n\| \leq M$. В силу леммы

$$||x_n - x_o|| > ||x_n^-|| > \frac{1}{36\sqrt{2}} + \frac{1}{M}$$

energy, uso $x_{n} \rightarrow x_{o}$.

Поступила в ред.-изд. отд. 28. П. 1975 г.